4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties

4-流形、校准流形、实代数簇

基本信息

  • 批准号:
    0905917
  • 负责人:
  • 金额:
    $ 27.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The proposer plans to study topology of smooth 4- manifolds, calibrated manifolds, and real algebraic varieties. The plan to attack to unsolved problems in 4-manifold theory is to decompose 4-manifolds into basic, easy to understand, pieces, which are called Corks, Plugs and Palfs, and study these pieces by applying techniques from complex and symplectic manifold theory. Questions about knottedness and uniqueness of Corks are particularly important in this context. An immediate consequence of these techniques is the construction of exotic Stein manifolds. The P.I. also plans to work on certain classes of 7 and 8 dimensional manifolds (so called G2 and Spin(7) manifolds). By studying the certain families of 3 and 4 dimensional submanifolds in them (so called associative and Cayley submanifolds) the P.I. hopes to get a global understanding of the gauge theories of low dimensional manifolds, and to construct a counting theory for these submanifolds (similar to Gromov-Witten counting theory of holomorphic curves in symplectic manifolds). Also intended is to explain mirror duality in terms of G2 manifolds. Finally the P.I. wants to continue working on the project of topological characterization of real algebraic sets. 4-dimensional manifolds (spaces) appear to decompose into small basic pieces (particles) which we call "Corks" and "Plugs". These pieces determine the exotic structures of the underlying 4-manifold. One can think of corks and plugs as freely moving particles in 4-manifolds like Fermions and Bosons in physics, or little knobs on a wall to turn on and off; the ambient exotic lights in a room. The P.I. plans to study the structure of these Corks and Plugs. The P.I. also plans to study G2 and Spin(7) manifolds (certain 7 and 8 dimensional spaces), which are of current interest in physicists, because they play important role in the String theory and M-theory. The P.I. also plans to work on the problem of determining which topological spaces are algebraic sets. Making a topological space algebraic helps us to understand many of the properties of the space.
提议者计划研究光滑的4歧管,校准的歧管和实际代数品种的拓扑。在4个manifold理论中攻击未解决的问题的计划是将4个manifolds分解为基本,易于理解的碎片,这些碎片称为软木塞,塞子和palfs,并通过应用复杂和符号歧管理论的技术来研究这些部分。在这种情况下,有关打结和软木的独特性的问题尤其重要。这些技术的直接后果是构造异国风格的斯坦因歧管。 P.I.还计划在某些7和8维歧管的某些类别(所谓的G2和Spin(7)歧管)上工作。通过研究其中的某些3和4个维度子曼群的家族(所谓的Associative and Cayley Submanifolds)P.I.希望能够对低维流形的规格理论有一个全球的理解,并为这些子手机构建计数理论(类似于符合形态曲线的Gromov-witten计数理论)。还目的是用G2歧管来解释镜子二元性。最后是P.I. 希望继续研究真实代数集的拓扑表征。 4维歧管(空格)似乎分解为我们称为“软木”和“塞子”的小基本碎片(粒子)。这些碎片决定了基础4个manifold的外来结构。人们可以将软木和插头视为4个manifords中的颗粒,例如物理学中的福音和玻色子,或墙上的小旋钮打开和关闭;房间里的环境外来灯。 P.I.计划研究这些软木塞和插头的结构。 P.I.还计划研究G2和Spin(7)歧管(某些7和8维空间),这些歧管在物理学家中引起了人们的兴趣,因为它们在字符串理论和理论中都起着重要作用。 P.I.还计划处理确定哪些拓扑空间是代数集的问题。制作拓扑空间代数有助于我们了解该空间的许多特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Selman Akbulut其他文献

Exotic rational surfaces without 1-handles
不带 1 控制柄的奇异有理曲面
  • DOI:
  • 发表时间:
    2007
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;Kouichi Yasui;Kouichi Yasui;安井弘一;Kouichi Yasui
    Selman Akbulut;Kouichi Yasui;Kouichi Yasui;安井弘一;Kouichi Yasui
  • 通讯作者:
    Kouichi Yasui
    Kouichi Yasui
Computer graphics and minimal surfaces
计算机图形学和最小曲面
  • DOI:
  • 发表时间:
    2014
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;安井弘一;Shoichi Fujimori
    Selman Akbulut;安井弘一;Shoichi Fujimori
  • 通讯作者:
    Shoichi Fujimori
    Shoichi Fujimori
Corks, Plugs and exotic structures
软木塞、塞子和奇异结构
Exotic rational elliptic surfaces without 1-handles
不带 1 控制柄的奇异有理椭圆曲面
Contact 5-manifolds admitting open books with exotic Stein pages
接触 5-流形承认开放的书籍与异国情调的斯坦因页面
  • DOI:
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;安井弘一
    Selman Akbulut;安井弘一
  • 通讯作者:
    安井弘一
    安井弘一
共 5 条
  • 1
前往

Selman Akbulut的其他基金

Exotic 4- Manifolds, and geometric structures
奇异4-流形和几何结构
  • 批准号:
    1505364
    1505364
  • 财政年份:
    2015
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    1502135
    1502135
  • 财政年份:
    2015
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065879
    1065879
  • 财政年份:
    2011
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Conference - Gokova Geometry/Topology Conference. To be held summer 2010-2014 in Turkey
会议 - Gokova 几何/拓扑会议。
  • 批准号:
    1005366
    1005366
  • 财政年份:
    2010
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    0707123
    0707123
  • 财政年份:
    2007
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant
4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties
4-流形、校准流形、实代数簇
  • 批准号:
    0505638
    0505638
  • 财政年份:
    2005
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    0403096
    0403096
  • 财政年份:
    2004
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Topological Invariants of 3 and 4-Manifolds
FRG:3 和 4 流形的拓扑不变量
  • 批准号:
    0244622
    0244622
  • 财政年份:
    2003
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant
Topology of Smooth 4-Manifolds
光滑4流形拓扑
  • 批准号:
    0204579
    0204579
  • 财政年份:
    2002
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Topology of Smooth 4-Manifolds
光滑4流形拓扑
  • 批准号:
    9971440
    9971440
  • 财政年份:
    1999
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

相控阵馈源定标和波束校准关键技术研究
  • 批准号:
    12303095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
日冕仪偏振分析的可溯源校准
  • 批准号:
    42374220
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
深海海底管线管多向缩径校准强化机制与多载荷联合作用失效破坏机理
  • 批准号:
    52375389
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于变分推断和物理约束的机器学习综合方法校准南极冰架流变参数
  • 批准号:
    42376230
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
米波十米波射电日像仪校准和数据处理方法研究
  • 批准号:
    12373102
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Studentship
    Studentship
SBIR Phase II: In-vivo validation of a volume-manufacturable and factory-calibrated wearable NT-proBNP monitoring system for heart failure treatment
SBIR II 期:用于心力衰竭治疗的可批量生产和工厂校准的可穿戴 NT-proBNP 监测系统的体内验证
  • 批准号:
    2335105
    2335105
  • 财政年份:
    2024
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Cooperative Agreement
    Cooperative Agreement
CAREER: HCC: Designing Visualizations to Support Critical Thinking and Calibrated Trust in Data
职业:HCC:设计可视化以支持批判性思维和校准数据信任
  • 批准号:
    2237585
    2237585
  • 财政年份:
    2023
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Self-calibrated ionophore-based ion-selective electrodes for at-home measurements of blood electrolytes
用于家庭测量血液电解质的自校准离子载体离子选择电极
  • 批准号:
    10592523
    10592523
  • 财政年份:
    2023
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别:
Clinically-calibrated Accelerated Fatigue Test for Predicting the Clinical Performance of Dental Restorative Materials
用于预测牙科修复材料临床性能的临床校准加速疲劳测试
  • 批准号:
    10738667
    10738667
  • 财政年份:
    2023
  • 资助金额:
    $ 27.56万
    $ 27.56万
  • 项目类别: