Non--Perturbative Interaction Effects in Disordered and Granular Metals

无序金属和颗粒金属中的非微扰相互作用效应

基本信息

  • 批准号:
    0405212
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research and education in the area of strongly correlated electron materials. Electron-electron interactions have a dramatic effect on transport and thermodynamic properties of disordered systems. The effect is especially pronounced in systems with reduced dimensionality. While perturbative effects (taking place at relatively weak disorder and high temperature) are rather well understood, strongly disordered or low-temperature systems continue to be intellectually challenging for both experimentalists and theoreticians. The PI aims to address the twin problem of strong disorder and strong correlation with non-perturbative methods of quantum field theory. Instanton approaches have been fruitful for the study of the Coulomb blockade in quantum dots. In the first phase of the work, the PI will extend his Keldysh nonlinear sigma model approach to study granular arrays consisting of a large number of strongly connected dots (grains). The developed techniques will then be applied to generic disordered systems. The goal of the research is to describe reliably low-temperature properties of strongly disordered metals, including an apparent glassy behavior recently observed in experiments.Broader impacts of the award are primarily educational. Undergraduate students (including those participating in the NSF sponsored REU and summer-student programs) will be involved in the research activities. The project will also involve at least one full-time graduate student, who is expected to actively participate in directing undergraduate research. The upper level solid-state courses will directly benefit from the results of the research activity. This award will also facilitate interactions with the industry (seminars and possibly mini-courses are planned to be given for industrial researchers) as well as international collaboration with scientists from Germany, Israel, Japan and Russia. Results of the work will be disseminated broadly in scientific publications, national and international conferences and their proceedings. An additional venue of dissemination will be through graduate summer-schools, such as Les-Houches.%%%This award supports theoretical research and education to tackle the challenging problem of disordered materials with strongly correlated electrons. Correlations in the motion of electrons arise from strong interactions between electrons. While understanding strongly correlated materials with a regular arrangement of atoms is a challenging problem in and of itself, the combination of strong correlation and a disordered configuration of atoms is a very difficult problem. The PI will use advanced methods of theoretical condensed matter physics to attack this problem starting from a consideration of granular systems. Experiments have revealed interesting and poorly understood phenomena in disordered and strongly correlated systems. The understanding of these may provide the key to understanding apparent experimental observations of a metallic state thought not to occur in disordered two-dimensional systems and an apparent glassy behavior recently observed in a number of experiments. Broader impacts of the award are primarily educational. Undergraduate students (including those participating in the NSF sponsored REU and summer-student programs) will be involved in the research activities. The project will also involve at least one full-time graduate student, who is expected to actively participate in directing undergraduate research. The upper level solid-state courses will directly benefit from the results of the research activity. This award will also facilitate interactions with the industry (seminars and possibly mini-courses are planned to be given for industrial researchers) as well as international collaboration with scientists from Germany, Israel, Japan and Russia. Results of the work will be disseminated broadly in scientific publications, national and international conferences and their proceedings. An additional venue of dissemination will be through graduate summer-schools, such as Les-Houches.***
该奖项支持强相关电子材料领域的理论研究和教育。电子-电子相互作用对无序系统的输运和热力学性质具有巨大影响。这种效应在降维系统中尤其明显。虽然微扰效应(在相对较弱的无序和高温下发生)已被很好地理解,但强烈无序或低温系统对实验学家和理论家来说仍然是智力上的挑战。该PI旨在通过量子场论的非微扰方法解决强无序性和强相关性的孪生问题。瞬子方法对于量子点库仑封锁的研究取得了丰硕的成果。在工作的第一阶段,PI 将扩展他的 Keldysh 非线性 sigma 模型方法来研究由大量强连接点(颗粒)组成的颗粒阵列。然后开发的技术将应用于通用无序系统。该研究的目标是描述强无序金属的可靠低温特性,包括最近在实验中观察到的明显玻璃态行为。该奖项的更广泛影响主要是教育性的。本科生(包括参加 NSF 资助的 REU 和暑期学生项目的学生)将参与研究活动。该项目还将涉及至少一名全日制研究生,预计他将积极参与指导本科生研究。高级固态课程将直接受益于研究活动的成果。该奖项还将促进与行业的互动(计划为行业研究人员举办研讨会和可能的迷你课程)以及与德国、以色列、日本和俄罗斯科学家的国际合作。工作成果将在科学出版物、国内和国际会议及其会议记录中广泛传播。另一个传播场所将通过研究生暑期学校,例如 Les-Houches。%%%该奖项支持理论研究和教育,以解决具有强相关电子的无序材料的挑战性问题。电子运动的相关性源于电子之间的强相互作用。虽然理解具有规则原子排列的强相关材料本身就是一个具有挑战性的问题,但强相关性和原子无序排列的结合是一个非常困难的问题。 PI 将使用理论凝聚态物理的先进方法从粒状系统的考虑出发来解决这个问题。实验揭示了无序和强相关系统中有趣且鲜为人知的现象。对这些的理解可能为理解金属态的明显实验观察提供了关键,该金属态被认为不会出现在无序二维系统中,并且最近在许多实验中观察到了明显的玻璃态行为。 该奖项的更广泛影响主要是教育方面的。本科生(包括参加 NSF 资助的 REU 和暑期学生项目的学生)将参与研究活动。该项目还将涉及至少一名全日制研究生,预计他将积极参与指导本科生研究。高级固态课程将直接受益于研究活动的成果。该奖项还将促进与行业的互动(计划为行业研究人员举办研讨会和可能的迷你课程)以及与德国、以色列、日本和俄罗斯科学家的国际合作。工作成果将在科学出版物、国内和国际会议及其会议记录中广泛传播。另一个传播场所将是通过研究生暑期学校,例如 Les-Houches。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Kamenev其他文献

How pure can we go with adiabatic state manipulation?
我们的绝热状态操纵能达到多纯粹?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raul A. Santos;Alex Kamenev;Y. Gefen
  • 通讯作者:
    Y. Gefen
Typeset Using Revt E X 1
使用 Revt E X 1 排版
  • DOI:
    10.1103/physrevlett.89.027001
  • 发表时间:
    2001-12-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alex Kamenev;Yuval Oreg
  • 通讯作者:
    Yuval Oreg
Quantum criticality and optical conductivity in a two-valley system
双谷系统中的量子临界性和光导率
  • DOI:
    10.1126/sciadv.aav3407
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Yasha Gindikin;Songci Li;Alex Levchenko;Alex Kamenev;A. Chubukov;Dmitrii L. Maslov
  • 通讯作者:
    Dmitrii L. Maslov
Dynamics of nano-magnetic oscillators
纳米磁振荡器的动力学
  • DOI:
    10.1093/acprof:oso/9780199691388.003.0006
  • 发表时间:
    2011-10-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Dunn;A. Chudnovskiy;Alex Kamenev
  • 通讯作者:
    Alex Kamenev
Coulomb blockade with neutral modes.
具有中性模式的库仑封锁
  • DOI:
    10.1103/physrevlett.114.156401
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alex Kamenev;Yuval Gefen
  • 通讯作者:
    Yuval Gefen

Alex Kamenev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Kamenev', 18)}}的其他基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2348668
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2049645
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER-QAC-QCH: NSF-BSF: Quantum Computation as a Non-Equilibrium Dynamical Many-Body System
EAGER-QAC-QCH:NSF-BSF:量子计算作为非平衡动态多体系统
  • 批准号:
    2037654
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1757388
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Kinetics and Entanglement in Quantum Devices
量子器件中的动力学和纠缠
  • 批准号:
    1608238
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota: Renewal
REU/RET 网站:明尼苏达大学物理和天文学:续订
  • 批准号:
    1460141
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
KINETICS OF FLUCTUATIONS IN NANO-DEVICES
纳米器件波动动力学
  • 批准号:
    1306734
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1156388
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonequilibrium Superconductivity in Disordered, Granular and Hybrid Systems
无序、粒状和混合系统中的非平衡超导性
  • 批准号:
    0804266
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

LncRNA BDNF-AS遗传变异扰乱色氨酸代谢在孤独症谱系障碍中的作用研究
  • 批准号:
    82304172
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PPARγ乙酰化诱导棕色脂肪退化扰乱糖脂稳态的作用及其机制研究
  • 批准号:
    32300978
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ERα-SREBP2-HMGCR通路探讨重楼皂苷Ⅰ扰乱雌激素介导的脂质代谢致雌性动物肝毒性机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
WDFY3基因突变扰乱NOTCH2信号通路导致先天性肾脏与尿路畸形发生的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
甲基丙二酸扰乱AMPK介导线粒体质量控制加重糖尿病心肌病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
  • 批准号:
    2401388
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
  • 批准号:
    2889469
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了