Collaborative Research: Bayesian Times Series Models for the Analysis of International Conflict
合作研究:用于分析国际冲突的贝叶斯时间序列模型
基本信息
- 批准号:0351179
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
International war and conflict threaten the lives and well-being of millions of people. On the basis of theoretical work in international relations, the co-investigators develop multivariate, Bayesian vector autoregression time series models (BVARs) for short and medium term conflict forecasting and for the analysis of counterfactuals of various kinds, more specifically, Markov-switching models of this type (MS-BVARs) for the Balkans, Israeli-Palestinian, and India-Pakistan conflicts. The models will incorporate and test theoretical work on conflict phase shifts as well as the results of research on the impact of elections and democratic transitions on conflict. Scaled events data from two sources (KEDS/TABARI and IDEA) will be used to estimate the model.The models will yield short and medium term, case specific, quantitative predictions of conflict and cooperation; they eventually will incorporate assessments of the welfare consequences of conflict. Finally, by developing priors for the model coefficients and constructing posterior inferences for the models' predictions, for one of the first times in political science, explicit assessments of the impact of model uncertainty on (political) forecasts accuracy will be produced.Intellectual Merit. The proposed has theoretical and practical value. To begin, it will produce statistically sound characterizations of conflict phase sequences. The investigators test formally for the number of phases in the Balkans, Israeli-Palestinian, and Indian-Pakistani conflicts, and also provide numerical estimates of the transition probabilities between these phases (along with measures of the precision of these estimates). They then will produce quantitative, weekly and monthly predictions of the future course of the three conflicts conditional on the realization of specific conflict phases and on the steady state probabilities of the conflict phases for each case. In addition, the fitted MS-BVARs will illuminate similarities and differences in the three conflicts' dynamics. For instance, the fitted models will show if there are common degrees of persistence in them, the extent to which the three conflicts display the same patterns of reciprocity and triangularity, whether the conflicts tend toward the same long-term (fixed) mean levels of conflict, and whether provision for electoral forces and transitions to (from) democracy enhance the predictive power of the MS-BVARs. Impulse response analysis will yield insights into the possible impact of hypothetical, surprise peace initiatives by third parties (conditional on the conflict phase). The methods of conditional forecasting (with the BVARs and MS-BVARs) will be used to analyze counterfactual histories of the conflicts. For example, by inserting counterfactual variables for elections in Pakistan in the late 1990s we will examine of the counterfactual consequences of that country not experiencing a democratic reversal on its conflict with India.Broader impact. The results will be disseminated in several ways. First, a web-site will be constructed. The website will contain the investigators' computer code, data, and examples. It also will contain a tutorial on how to construct and apply BVARs and MS-BVARs for selected international conflicts. Second, the investigators will offer short-courses on how to build and apply MS-BVARs. These courses will be offered at such gatherings as the International Studies Association (ISA) , Peace Science Society (PSS), and American Political Science Association (APSA) meetings. Every effort will be to include "unrepresentative groups" in these short course and training sessions. Scientifically, the project will demonstrate the usefulness of events data in political forecasting, and advance our understanding of Bayesian time series methods in the social sciences. American and global society will benefit from being better able to anticipate international conflict weeks and months ahead and also being able to evaluate counterfactuals of various kinds.
国际战争和冲突威胁着数百万人的生命和福祉。在国际关系中的理论工作的基础上,共同评估者为短期和中期冲突预测开发了多元,贝叶斯矢量自动进程时间序列模型(BVARS),以及分析各种类型的反事实,更具体地说,更具体地说,是这种类型的Markov-switching模型(MS-BVARS),用于Balkans,Israian israeli-part and Israisian-pand-pand-pan and-passinian-pand-pan and-palisissianian-pand-passinian-palisiss-palisiss和印度。这些模型将纳入和测试有关冲突阶段的理论工作,以及对选举和民主过渡对冲突的影响的研究结果。将使用来自两个来源(KEDS/TABARI和IDEA)的缩放事件数据来估计模型。模型将产生短期和中期,案例特定的,针对冲突与合作的定量预测;他们最终将纳入对冲突的福利后果的评估。最后,通过开发模型系数的先验,并为模型的预测构建后验推断,在政治科学中的第一次中之一,将产生模型不确定性对(政治)预测准确性的影响的明确评估。提议的理论和实用价值。首先,它将产生冲突阶段序列的统计上声音特征。研究人员正式测试了巴尔干,以色列 - 帕勒斯坦和印第安 - 巴基斯坦冲突的相位数量,并提供了这些阶段之间过渡概率的数值估计(以及这些估计精确度的量度)。然后,他们将根据特定冲突阶段的实现以及每种情况的冲突阶段的稳态概率,对三个冲突的未来过程进行定量,每周和每月的预测。此外,拟合的MS-BVAR将阐明三个冲突动态的相似性和差异。例如,拟合的模型将表明是否存在持久程度的持久程度,这三个冲突表现出相同的互惠和三角形模式的程度,是否趋向于相同的长期(固定)平均冲突水平趋向于相同的(固定)平均水平,以及为民主的选举力量和转移提供(来自)民主的预测能力是否增强了MS-Bvars的预测能力。冲动反应分析将对假设,惊喜和平计划的可能影响(在冲突阶段)产生影响。条件预测的方法(与BVAR和MS-BVARS)将用于分析冲突的反事实历史。例如,通过在1990年代后期插入巴基斯坦选举的反事实变量,我们将研究该国的反事实后果不会在与印度的冲突中遭受民主逆转。结果将通过多种方式传播。首先,将构建一个网站。该网站将包含调查人员的计算机代码,数据和示例。它还将包含有关如何在选定的国际冲突中构建和应用BVAR和MS-BVAR的教程。其次,调查人员将提供有关如何构建和应用MS-BVARS的缩写。这些课程将在国际研究协会(ISA),和平科学学会(PSS)和美国政治科学协会(APSA)会议等聚会上提供。每一项努力都将在这些短期课程和培训课程中包括“非代表性群体”。从科学上讲,该项目将证明事件数据在政治预测中的有用性,并促进我们对社会科学中贝叶斯时间序列方法的理解。美国和全球社会将从能够更好地预期未来几周和几个月的国际冲突中受益,并能够评估各种反事实。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Freeman其他文献
Enemies of the State : Interdependence Between Institutional Forms and the Ecology of the Kibbutz
国家的敌人:基布兹的制度形式和生态之间的相互依存
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
T. Simons;Paul Ingram;David S. DeVries;John Freeman;Richard Harrison;R. Horton;I. Katznelson;Daniel A. Levinthal;Joel Podolny;Joyce Robbins;C. Tilly;Elisabeth Wood;Ezra Zuckerman - 通讯作者:
Ezra Zuckerman
Physiologic Factors Affecting Defecatory Sensation: Relation to Aging
影响排便感觉的生理因素:与衰老的关系
- DOI:
- 发表时间:
1974 - 期刊:
- 影响因子:6.3
- 作者:
H. F. Newman;John Freeman - 通讯作者:
John Freeman
Acetylenotrophic and Diazotrophic Bradyrhizobium sp. Strain I71 from Trichloroethylene-Contaminated Soils
乙酰营养型和固氮型慢生根瘤菌 sp.
- DOI:
10.3897/aca.6.e109201 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
D. Akob;John Sutton;Timothy Bushman;S. Baesman;Edina Klein;Yesha Shrestha;Robert Andrews;Janna Fierst;Max Kolton;Sara Gushgari;Ronald Oremland;John Freeman - 通讯作者:
John Freeman
REMS pharmacy tasks: The adoption of an innovative electronic support system.
REMS 药房任务:采用创新的电子支持系统。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
May L Chan;Jennifer L Bourke;Robin McWilliams;P. Sheehan;J. Chapman;Kevin White;John Freeman;J. Backstrom - 通讯作者:
J. Backstrom
Sustained Thromboresistant Bioactivity of Heparin-Bonded PTFE Bypass Graft in a Canine Femoral Artery Bypass Model
- DOI:
10.1016/j.avsg.2017.06.007 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
John Freeman;Aaron Chen;Roy J. Weinberg;Tamuru Okada;Changyi Chen;Peter H. Lin - 通讯作者:
Peter H. Lin
John Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Freeman', 18)}}的其他基金
SBIR Phase I: Microbiome for improving salt stress tolerance in crops
SBIR 第一阶段:提高作物耐盐胁迫能力的微生物组
- 批准号:
2035899 - 财政年份:2021
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Technology for Real Time Ex Ante Forecasting of Intra and International Conflict and Cooperation
合作研究:开发实时事前预测内部和国际冲突与合作的技术
- 批准号:
0921018 - 财政年份:2009
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Globalization and Representation in Developed Democracies
博士论文研究:发达民主国家的全球化与代表性
- 批准号:
0241824 - 财政年份:2003
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Coordination for the Geospace Environment Modeling Workshops
地理空间环境建模研讨会的协调
- 批准号:
9731074 - 财政年份:1997
- 资助金额:
$ 19.55万 - 项目类别:
Continuing grant
A Systems Dynamics Approach to Understanding Technical Innovation in the U. S. Semiconductor Industry
理解美国半导体行业技术创新的系统动力学方法
- 批准号:
8218013 - 财政年份:1983
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research on Models of Governmental Dynamics InDependent Societies
独立社会政府动力模型的合作研究
- 批准号:
8105841 - 财政年份:1981
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research on Formal Models of Governmental Dynamics in Dependent Societies
依附社会政府动态正式模型的合作研究
- 批准号:
7907101 - 财政年份:1979
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
相似国自然基金
贝叶斯视角下视觉分类器的鲁棒泛化性研究
- 批准号:62302139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高维多节点贝叶斯网络的银屑病罹患与五运六气关联性研究
- 批准号:82374618
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
农田生物量遥感估算模型中输入不确定性的贝叶斯优化方法研究
- 批准号:42301386
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
局部可交换数据的贝叶斯非参数模型及其在精算中的应用研究
- 批准号:72371186
- 批准年份:2023
- 资助金额:39.00 万元
- 项目类别:面上项目
基于贝叶斯优化估计的多角度偏振遥感气溶胶层高度分布反演研究
- 批准号:42371388
- 批准年份:2023
- 资助金额:46.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Continuing Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant