ITR: Semantically Tractable Questions: Theory and Implementation
ITR:语义上可处理的问题:理论与实施
基本信息
- 批准号:0312988
- 负责人:
- 金额:$ 39.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-15 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding arbitrary natural language sentences is widely regarded as very challenging. Yet understanding questions such as ``What is the capital of Italy?'' or ``What Chinese restaurants are open on Sunday in Seattle?'' seems straightforward even for a machine. While natural language sentences have the potential to be subtle, complex, and rife with ambiguity, they can also be simple, straight forward, and clear. This project formalizes this intuition by identifying classes of questions that are ``easy to understand'' in a well defined sense. People are unwilling to trade reliable and predictable user interfaces for intelligent but unreliable ones. To satisfy users, Natural Language Interfaces (NLIs) should not be allowed to misinterpret their questions often, if at all. Consequently, this research project has three components. First, it introduces a theoretical framework for analyzing the reliability of an NLI by formally defining the properties of soundness and completeness and identifying a class of semantically tractable natural language questions for which sound and complete NLIs can be built. Second, it is shown that the theory has practical import by measuring the prevalence of semantically tractable questions and by measuring the performance of a sound and complete NLI in practice. Finally, the project extends the framework to dialog systems and to increasingly broad classes of natural language sentences.The research has the potential to reinvigorate basic research on NLIs, and to have the broader societal impact of making powerful information resources more readily available to ordinary people regardless of their knowledge of Computer Science.
理解任意的自然语言句子被广泛认为是非常具有挑战性的。 然而,理解诸如``意大利的首都是什么?''之类的问题``周日在西雅图开放了哪些中餐馆?'',即使对于机器来说也很简单。 尽管自然语言句子有可能充满含糊的微妙,复杂和泛滥,但它们也可以简单,直截了当且清晰。 该项目通过在明确的意义上识别``易于理解''的问题来形式化这种直觉。人们不愿意将可靠且可预测的用户界面换成智能但不可靠的用户界面。 为了满足用户,自然语言界面(NLIS)不应经常误解他们的问题(如果有的话)。 因此,该研究项目具有三个组成部分。 首先,它引入了一个理论框架,用于通过正式定义健全性和完整性的属性,并确定可以构建声音和完整的NLIS的一类可说的自然语言问题,以分析NLI的可靠性。 其次,结果表明,该理论通过衡量语义上可触犯的问题的普遍性以及在实践中测量声音和完整的NLI的性能,具有实用性的导入。 最后,该项目将框架扩展到对话系统和越来越广泛的自然语言句子。该研究有可能重振对NLI的基础研究,并具有更广泛的社会影响,即使他们对计算机科学的了解如何,使普通人更容易获得强大的信息资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oren Etzioni其他文献
Lexical translation with application to image searching on the web
词汇翻译及其在网络图像搜索中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Oren Etzioni;Kobi Reiter;S. Soderland;M. Sammer - 通讯作者:
M. Sammer
Expanding the Recall of Relation Extraction by Bootstrapping
通过 Bootstrapping 扩展关系提取的召回率
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. Tomita;S. Soderland;Oren Etzioni - 通讯作者:
Oren Etzioni
Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence
人工智能与2030年的生活:人工智能一百年研究
- DOI:
10.48550/arxiv.2211.06318 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Stone;R. Brooks;Erik Brynjolfsson;Ryan Calo;Oren Etzioni;G. Hager;Julia Hirschberg;Shivaram Kalyanakrishnan;Ece Kamar;Sarit Kraus;Kevin Leyton;D. Parkes;W. Press;A. Saxenian;J. Shah;Milind Tambe;Astro Teller - 通讯作者:
Astro Teller
Machine reading at web scale
网络规模的机器阅读
- DOI:
10.1145/1341531.1341533 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Oren Etzioni - 通讯作者:
Oren Etzioni
Gender trends in computer science authorship
计算机科学作者的性别趋势
- DOI:
10.1145/3430803 - 发表时间:
2019 - 期刊:
- 影响因子:22.7
- 作者:
Lucy Lu Wang;Gabriel Stanovsky;Luca Weihs;Oren Etzioni - 通讯作者:
Oren Etzioni
Oren Etzioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oren Etzioni', 18)}}的其他基金
III-Medium: Reading the Web: Utilizing Markov Logic in Open Information Extraction
III-中:阅读网络:在开放信息提取中利用马尔可夫逻辑
- 批准号:
0803481 - 财政年份:2008
- 资助金额:
$ 39.5万 - 项目类别:
Continuing Grant
Unsupervised, Non-stop Extraction of Information from the World Wide Web
无监督、不间断地从万维网上提取信息
- 批准号:
0535284 - 财政年份:2006
- 资助金额:
$ 39.5万 - 项目类别:
Continuing Grant
SGER: Assisted Cognition: First Steps Towards Computer Aids for People with Alzheimer's Disease
SGER:辅助认知:为阿尔茨海默病患者提供计算机辅助的第一步
- 批准号:
0225774 - 财政年份:2002
- 资助金额:
$ 39.5万 - 项目类别:
Standard Grant
Automatic Reference Librarians for the World Wide Web
万维网自动参考图书馆员
- 批准号:
9874759 - 财政年份:1999
- 资助金额:
$ 39.5万 - 项目类别:
Continuing Grant
Explanation-Based Learning: Finding Better Explanations Via Partial Evaluation
基于解释的学习:通过部分评估找到更好的解释
- 批准号:
9211045 - 财政年份:1992
- 资助金额:
$ 39.5万 - 项目类别:
Continuing Grant
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 39.5万 - 项目类别:
Fellowship
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
- 批准号:
2335533 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Standard Grant
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
- 批准号:
10635511 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
SHF: SMALL: Semantically and Practically Generalizing Graded Modal Types
SHF:SMALL:语义和实践上概括分级模态类型
- 批准号:
2104535 - 财政年份:2021
- 资助金额:
$ 39.5万 - 项目类别:
Standard Grant
Scene Processing with Machine Learnable and Semantically Parametrized Scene Representations
使用机器学习和语义参数化场景表示进行场景处理
- 批准号:
MR/T043229/1 - 财政年份:2021
- 资助金额:
$ 39.5万 - 项目类别:
Fellowship