Geometric and Size Control of Mechanical Properties in Surfactant Templated Silicas and Periodic Nanoporous Oxides

表面活性剂模板化二氧化硅和周期性纳米多孔氧化物机械性能的几何和尺寸控制

基本信息

  • 批准号:
    0307322
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

GEOMETRIC & CONTROL OF MECHANICAL PROPERTIES IN SURFACTANT TEMPLATED SILICAS & OTHER PERIODIC POROUS OXIDESSarah H. Tolbert and Vijay Gupta, UCLA This study involves a number of experiments aimed at understanding and exploiting the unique elastic properties of periodic nanostructured silica/surfactant composite and porous inorganic solids. Advances in material synthesis and self-assembly now allow for the production of periodic, highly regular inorganic/organic composite materials through solution-phase self-organization. Similarly ordered porous inorganic oxides can be generated by selectively removing the organic fraction of the composite. By varying the nature of the organic template, the pore size can be tuned from approximately 2 nm to over 20 nm and the overall periodicity can be varied. Recent experiments by the PI suggest that the mechanical properties of these periodic materials may be quiet different from disordered inorganic/organic composites or disordered porous materials. Ordered materials appear to be both stiffer than disordered composites and more elastic, showing very high failure strain. Our goal is thus to explore the elastic properties of these periodic composite and porous materials to understand how nanoscale architecture influences mechanical properties. We are working on this goal in two different ways. In the first set of experiments, we are compressing composites under hydrostatic conditions using diamond anvil cell techniques with a goal of understanding how local deformation combine with nanoscale distortions to control bulk moduli. In the second set of experiments, we are examining the mechanical properties of thin films under tension, aiming both to measure macroscopic elastic moduli and to understand the high failure strain observed in preliminary experiments. In the first set of experiments, we use hydrostatic, conditions to compress composite materials while interrogating them using spectroscopic of scattering techniques in order to understand the basic for the high modulus and excellent reversibility of distortions observed in periodic silica/surfactant composites. We do this by combining low-angle X-ray scattering, Raman scattering, and Brillouin scattering under pressure to probe distortions on both the atomic and nanometer length scales. A range of samples with varying periodicity, wall and pore structures, and dimensionality are being examined. Our goal is to systematically vary surfaces area, surface structure, length scale, and connectivity to examine the effect of these variables on both local and longer length-scale, and deformations of the periodic structure. The results will allow us to develop a detailed understanding of how nanoscale architecture and atomic scale bonding combine to control mechanical properties. In the second set of experiments, we are examining tensile properties of continuous periodic templated thin films to examine how anisotropic nanoscale architectures can produce anisotropic mechanical properties. Tensile moduli and strain-to-break values are measured; preliminary results on periodic silica/polymer composites indicate remarkable strain-to-break values 50x greater than those observed for bulk silica. We are exploring a range of samples with variations in nanoscale architecture like those described above, particularly exploiting bulk alignment of the composite film to measure anisotropic elastic moduli. Data is being modeled using fracture and applied mechanics concepts to understand the role of geometry in controlling cracking and strain-to-break. The broader impacts of this work are multifold. Periodic composite or porous materials have the potential to dramatically improve applications where low thermal conductivity, low dielectric constant, or simply low density need to be combined with high stiffness and high strain. By developing the framework for understanding the role of architecture in controlling elastic properties, we lay the foundation for a broad range of future advances. More immediately, the experiments proposed here are a true collaboration between chemists and engineers and as such, they provide excellent training for graduate students in the area of in interdisciplinary science and technology.
表面活性剂模板硅和其他周期性的多孔氧化剂H. Tolbert和Vijay Gupta中机械性能的几何和控制,UCLA涉及许多实验,旨在理解和利用周期性纳米结构的硅/表面活性剂/表面液体组合和多孔的固体的独特弹性。现在,材料合成和自组装的进步可以通过溶液 - 相 - 相 - 相 - 相,可以通过溶液 - 相 - 相 - 固定材料生产。可以通过选择性去除复合材料的有机分数来产生类似有序的多孔无机氧化物。通过改变有机模板的性质,可以将孔径从大约2 nm调整到20 nm以上,并且可以改变整体周期性。 PI的最新实验表明,这些周期性材料的机械性能可能与无机/有机复合材料或无序多孔材料不同。有序的材料似乎比无序的复合材料既更硬,又更弹性,显示出非常高的失败菌株。因此,我们的目标是探索这些周期性复合材料和多孔材料的弹性特性,以了解纳米级结构如何影响机械性能。我们正在以两种不同的方式来实现这一目标。在第一组实验中,我们使用钻石砧细胞技术在静水条件下压缩复合材料,目的是了解局部变形如何与纳米级畸变结合以控制散装模量。在第二组实验中,我们正在研究张力下的薄膜的机械性能,旨在测量宏观弹性模量并了解初步实验中观察到的高失败菌株。在第一组实验中,我们使用静液压条件来压缩复合材料,同时使用散射技术的光谱审查它们,以了解高模量的基本,并在周期性二氧化硅/表面活性剂复合材料中观察到的扭曲的出色可逆性。我们通过将低角度的X射线散射,拉曼散射和布里鲁因散射结合在压力下以探测原子和纳米长度尺度上的探测失真来做到这一点。正在检查具有不同周期性,墙壁和孔结构以及维度的一系列样品。我们的目标是系统地改变表面区域,表面结构,长度尺度和连通性,以检查这些变量对局部和较长长度尺度的影响以及周期性结构的变形。结果将使我们能够详细了解纳米级体系结构和原子尺度键合结合以控制机械性能。在第二组实验中,我们正在检查连续周期性模板薄膜的拉伸特性,以检查各向异性纳米级架构如何产生各向异性机械性能。测量拉伸模量和应变到突破值;周期性二氧化硅/聚合物复合材料的初步结果表明,比散装二氧化硅观察到的菌株对突破值高50倍。我们正在探索如上所述的纳米级体系结构中具有变化的样品范围,特别是利用复合膜的散装对准以测量各向异性弹性模量。数据正在使用断裂和应用力学概念进行建模,以了解几何在控制裂纹和应变到破裂中的作用。这项工作的更广泛影响是多重的。周期性的复合或多孔材料有可能显着改善高热电导率,低介电常数或仅需低密度的应用,需要与高刚度和高应变结合使用。通过开发理解体系结构在控制弹性属性中的作用的框架,我们为未来的广泛进步奠定了基础。 更立即,这里提出的实验是化学家与工程师之间的真正合作,因此,它们为跨学科科学技术领域的研究生提供了出色的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Tolbert其他文献

Assessing the drivers of illegal resource use to improve wildlife conservation interventions
  • DOI:
    10.1016/j.biocon.2023.109983
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Tolbert;Ildephonse Munyarugero;Prosper Uwingeli;Felix Ndagijimana
  • 通讯作者:
    Felix Ndagijimana

Sarah Tolbert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Tolbert', 18)}}的其他基金

Understanding Carrier Delocalization and Transport in Micelle Forming Amphiphilic Conjugated Polymers
了解形成胶束的两亲性共轭聚合物中的载流子离域和传输
  • 批准号:
    2305152
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Using Amphiphilic Semiconducting Polymers to Control Structure and Exited State Dynamic in Conjugated Organic Assemblies
使用两亲性半导体聚合物控制共轭有机组件中的结构和激发态动态
  • 批准号:
    2003755
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cryogen-Free, State-of-the-Art, Superconducting Quantum Interference Device (SQuID) Magnetometer
MRI:购买最先进的无冷冻剂超导量子干涉装置 (SQuID) 磁力计
  • 批准号:
    1625776
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Building Electron Transfer Cascades into Amphiphlic Donor-Acceptor Assemblies
将电子转移级联构建成两亲性供体-受体组件
  • 批准号:
    1608957
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Using Self-Organization to Control Nanometer-Scale Architecture in Semiconducting Polymer-Based Solar Cells
利用自组织控制半导体聚合物太阳能电池中的纳米级结构
  • 批准号:
    1112569
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Acquisition of X-ray Powder Diffraction Equipment for 21st Century Materials Research and Education
购置X射线粉末衍射设备用于21世纪材料研究和教育
  • 批准号:
    0315828
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Ordered Nanoporous Semiconductors and Metals Synthesized by Combining Zintl Ion Chemistry with Inorganic/Organic Self-Organization
职业:Zintl 离子化学与无机/有机自组织相结合合成有序纳米多孔半导体和金属
  • 批准号:
    9985259
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
The Kinetics of Phase Stability in Periodic Silica/Surfactant Nanostructured Materials
周期性二氧化硅/表面活性剂纳米结构材料的相稳定性动力学
  • 批准号:
    9807180
  • 财政年份:
    1998
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Hydrothermal Stability in Mesostructured Silica/Surfactant Composites: The Role of Kinetic Barriers
介孔二氧化硅/表面活性剂复合材料的水热稳定性:动力学势垒的作用
  • 批准号:
    9805254
  • 财政年份:
    1998
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowships in Chemistry
化学博士后研究奖学金
  • 批准号:
    9626523
  • 财政年份:
    1996
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award

相似国自然基金

面向大尺寸不规则物体空中柔性抓取的多飞行机器人模块化构建与协同控制研究
  • 批准号:
    52305001
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
大尺寸二维半导体横向异质结/超晶格可控制备及物性研究
  • 批准号:
    52302183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
亚毫米波望远镜米级尺寸铝蜂窝夹层面板面形控制关键技术
  • 批准号:
    12373100
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于UO22+尺寸PVA分子印迹型吸附剂的可控制备及铀的定向提取
  • 批准号:
    22206156
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂应力状态下大尺寸硐室围岩损伤破坏机理和控制方法
  • 批准号:
    52274146
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

IBIS-iPSC: Organoid modeling of cortical surface area hyperexpansion in autism spectrum disorder
IBIS-iPSC:自闭症谱系障碍皮质表面积过度扩张的类器官建模
  • 批准号:
    10656866
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Arthroscopic-assisted tibial plateau fixation (AATPF) vs. Open reduction internal fixation (ORIF): A multicenter randomized controlled trial
关节镜辅助胫骨平台固定术 (AATPF) 与切开复位内固定术 (ORIF):一项多中心随机对照试验
  • 批准号:
    10723527
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
  • 批准号:
    10783525
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
  • 批准号:
    10722368
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Epigenetic Dysregulation, Genetic Mutations, And Outcomes Of Lymphoid Malignancies Related To Agent Orange And Burn Pit Exposures Compared To Unexposed Case-Matched Controls
与未暴露的病例匹配对照相比,与橙剂和烧伤坑暴露相关的表观遗传失调、基因突变和淋巴恶性肿瘤的结果
  • 批准号:
    10587826
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了