Understanding Carrier Delocalization and Transport in Micelle Forming Amphiphilic Conjugated Polymers
了解形成胶束的两亲性共轭聚合物中的载流子离域和传输
基本信息
- 批准号:2305152
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry, Professors Sarah H Tolbert, Benjamin J Schwartz and Yves Rubin of the University of California at Los Angeles are systematically studying assemblies of semiconducting polymers in aqueous solutions in order to seek more favorable geometries for electrical conductivity. Semiconducting polymers are an exciting class of optoelectronic materials because of their solution processability, low cost, and structural tunability. These characteristics make them useful in a range of organic electronic devices, including photovoltaics, thermoelectrics, light-emitting diodes, and transistors. However, the conformational freedom of conjugated polymers leads to intrinsic disorder that can result in poor electrical conductivity and hence limited commercial applicability. This research will address these issues and use organic synthesis, structural studies, and modern spectroscopy to explore water-soluble amphiphilic semiconducting polymers that self-assemble into cylindrical micelles as a way to straighten polymer chains and reduce defects without the need for a crystalline network. The efforts toward controlling polymer self-assembly while interrogating chain conformation with respect to carrier mobility have the potential for broad impact in the field of organic electronics and could lead to a development of new and low-cost polymeric systems for a variety of applications in which temperature and/or light are converted to electricity and vice versa. The project will provide opportunities for undergraduate and graduate students to be involved in cutting-edge interdisciplinary research. In an effort to bring the ideas of nanostructured materials, organic electronics, and self-assembly to a broader audience, experiments related to this work will be brought to secondary school classrooms throughout the greater Los Angeles area via a series of graduate-student run workshops for teachers. This research will focus on the synthesis of micelle-forming amphiphilic conjugated polymers based on poly(cyclopentadithiophene)-alt-thiophene (PCT) backbones, and will investigate of how their assembled structure controls charge mobility upon doping. In the first objective, organic synthesis and amphiphilic assembly will be used to precisely control the position of charge-balancing counterions in chemically-doped PCT polymers. PCT-based polymers with cationic, anionic, non-ionic, and zwitterionic size chains will be prepared and solution-phase small-angle X-ray scattering (SAXS) will be used to characterize micelle formation. Doping will be achieved with iron(III) salts in water and the number and nature of charge carriers will be probed using steady-state and transient IR/visible absorption spectroscopy. Based on theoretical calculations and modeling, doubly charged side chains and/or divalent solution-phase counterions will be employed to control polaron pairing into bipolarons at high doping densities. In order to create systems where the anionic side chains serve as counterions for the polarons, copolymers of anionic and either zwitterionic or non-ionic polymers will be applied. Such an approach will eliminate the need for additional ions in solution. The second objective will target new polymer backbones that are easier to chemically dope. The final goal will seek to develop methods to transition optimized assemblies from aqueous solutions into the solid state to create new materials with improved conductivity. The comprehensive approach for controlling polymer conformation and charge localization associated with this research has the potential to provide important strategies to further understand fundamental charge carrier dynamics in conjugated polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系高分子、超分子和纳米化学项目的支持下,加州大学洛杉矶分校的 Sarah H Tolbert、Benjamin J Schwartz 和 Yves Rubin 教授正在系统地研究半导体聚合物在水溶液中的组装,以寻求对导电性更有利的几何形状。 半导体聚合物因其溶液加工性、低成本和结构可调性而成为一类令人兴奋的光电材料。 这些特性使其可用于一系列有机电子器件,包括光伏、热电、发光二极管和晶体管。 然而,共轭聚合物的构象自由度会导致内在无序,从而导致导电性差,从而限制商业应用。 这项研究将解决这些问题,并利用有机合成、结构研究和现代光谱学来探索水溶性两亲性半导体聚合物,这些聚合物可以自组装成圆柱形胶束,从而无需晶体网络即可拉直聚合物链并减少缺陷。 控制聚合物自组装同时询问载流子迁移率链构象的努力可能在有机电子领域产生广泛影响,并可能导致开发用于各种应用的新型低成本聚合物系统,其中温度和/或光转换为电能,反之亦然。 该项目将为本科生和研究生提供参与前沿跨学科研究的机会。为了将纳米结构材料、有机电子学和自组装的想法带给更广泛的受众,与这项工作相关的实验将通过一系列研究生举办的研讨会带到整个大洛杉矶地区的中学课堂对于教师来说。这项研究将重点关注基于聚(环戊二噻吩)-交替噻吩(PCT)主链的胶束形成两亲性共轭聚合物的合成,并将研究它们的组装结构如何在掺杂时控制电荷迁移率。 在第一个目标中,有机合成和两亲组装将用于精确控制化学掺杂 PCT 聚合物中电荷平衡抗衡离子的位置。 将制备具有阳离子、阴离子、非离子和两性离子尺寸链的 PCT 聚合物,并使用溶液相小角 X 射线散射 (SAXS) 来表征胶束形成。 掺杂将通过水中的铁(III)盐来实现,并且将使用稳态和瞬态红外/可见吸收光谱来探测载流子的数量和性质。 基于理论计算和建模,双电荷侧链和/或二价溶液相抗衡离子将用于控制高掺杂密度下极化子配对成双极化子。为了创建其中阴离子侧链充当极化子的抗衡离子的系统,将应用阴离子与两性离子或非离子聚合物的共聚物。这种方法将消除溶液中额外离子的需要。 第二个目标将针对更容易化学掺杂的新聚合物主链。 最终目标将寻求开发方法,将优化的组件从水溶液转变为固态,以创造具有更高导电性的新材料。 与这项研究相关的控制聚合物构象和电荷局域化的综合方法有可能为进一步了解共轭聚合物中的基本载流子动力学提供重要策略。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Tolbert其他文献
Sarah Tolbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Tolbert', 18)}}的其他基金
Using Amphiphilic Semiconducting Polymers to Control Structure and Exited State Dynamic in Conjugated Organic Assemblies
使用两亲性半导体聚合物控制共轭有机组件中的结构和激发态动态
- 批准号:
2003755 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
MRI: Acquisition of a Cryogen-Free, State-of-the-Art, Superconducting Quantum Interference Device (SQuID) Magnetometer
MRI:购买最先进的无冷冻剂超导量子干涉装置 (SQuID) 磁力计
- 批准号:
1625776 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Building Electron Transfer Cascades into Amphiphlic Donor-Acceptor Assemblies
将电子转移级联构建成两亲性供体-受体组件
- 批准号:
1608957 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Using Self-Organization to Control Nanometer-Scale Architecture in Semiconducting Polymer-Based Solar Cells
利用自组织控制半导体聚合物太阳能电池中的纳米级结构
- 批准号:
1112569 - 财政年份:2011
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Geometric and Size Control of Mechanical Properties in Surfactant Templated Silicas and Periodic Nanoporous Oxides
表面活性剂模板化二氧化硅和周期性纳米多孔氧化物机械性能的几何和尺寸控制
- 批准号:
0307322 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Acquisition of X-ray Powder Diffraction Equipment for 21st Century Materials Research and Education
购置X射线粉末衍射设备用于21世纪材料研究和教育
- 批准号:
0315828 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAREER: Ordered Nanoporous Semiconductors and Metals Synthesized by Combining Zintl Ion Chemistry with Inorganic/Organic Self-Organization
职业:Zintl 离子化学与无机/有机自组织相结合合成有序纳米多孔半导体和金属
- 批准号:
9985259 - 财政年份:2000
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
The Kinetics of Phase Stability in Periodic Silica/Surfactant Nanostructured Materials
周期性二氧化硅/表面活性剂纳米结构材料的相稳定性动力学
- 批准号:
9807180 - 财政年份:1998
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Hydrothermal Stability in Mesostructured Silica/Surfactant Composites: The Role of Kinetic Barriers
介孔二氧化硅/表面活性剂复合材料的水热稳定性:动力学势垒的作用
- 批准号:
9805254 - 财政年份:1998
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowships in Chemistry
化学博士后研究奖学金
- 批准号:
9626523 - 财政年份:1996
- 资助金额:
$ 80万 - 项目类别:
Fellowship Award
相似国自然基金
pH响应双重靶向单线态氧可控递送载体用于胞内菌的杀伤
- 批准号:52303175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
凝集素高亲和糖载体吸入粉雾剂表面微结构的定向构建及其肺部感染增效治疗机制研究
- 批准号:82373802
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
质子辐照232Th制备无载体225Ac并利用副产物制备213Bi发生器与223Ra
- 批准号:22306004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核靶向脂质四价铂载体型前药的构建及其负载siXkr8增强免疫的研究
- 批准号:22305136
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新型减毒VSV载体的新冠黏膜疫苗及其免疫机制研究
- 批准号:32300744
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Fellowship
CAREER: Development of New Gas-Releasing Molecules Using a Thiol Carrier
职业:利用硫醇载体开发新型气体释放分子
- 批准号:
2338835 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
- 批准号:
2339502 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Carrier recombination dynamics in III-N photodetectors
III-N 光电探测器中的载流子复合动力学
- 批准号:
2341747 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别: