Nonlinear Wave Motion

非线性波动

基本信息

  • 批准号:
    0303756
  • 负责人:
  • 金额:
    $ 21.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Abstract: 0303756, PI: Mark Ablowitz, University of CaloradoTitle: Nonlinear Wave MotionThe solutions and properties of a class of nonlinear wave equations and related nonlinear systems which arise frequently in application will be studied by analytical, asymptotic and computational methods. New solutions of multi-dimensional equations and related linear scattering problems will be investigated. A prototypical system is the Kadomtsev-Petviashvili (KP) equation, which is a two-space one-time dimensional extension of the Korteweg-deVries equation. Associated with the linearization of the KP equation is the nonstationary Schrodinger equation which itself is a prominent equation in mathematics and physics. Important recent discoveries by the PI include finding new real, localized, multi-lump solutions to the KP equation and new classes of eigenfuctions to the nonstationary Schrodinger equation. These solutions are related to a positive integer, referred to as the charge, which is a type of winding number or index. The characterization of these solutions in terms of the charge and other indices will continue. New classes of KP solutions will be sought. Reductions of the four dimensional self-dual Yang Mills (SDYM) system, which is viewed as a "master" integrable system, leads to the study of novel nonlinear ordinary differential equations whose solutions possess unusual features. Special cases are the classical Darboux-Halphen system and Chazy equation, in general position. The solutions of these systems are related to modular/automorphic functions; and in the case of Chazy, it is related to the well known Ramanujan functions. Research involving new reductions of SDYM will continue. The investigation of differential-difference nonlinear Schrodinger (NLS) equations has shown that new vector extensions of a previously derived scalar difference NLS equation has soltion solutions and is integrable by the inverse scattering transform. The scalar and vector difference NLS systems reduce in the continuous limit to the physically important NLS equations. New solutions and properties of this vector difference NLS equation will be studied. Recent experimental and theoretical studies of water waves has shown that modulation of periodic waves exhibit nonrepeatible, chaotic dynamics whereas localized soltion soltuions do not possess these properties. This work was motivated by earlier research by the PI on computational chaos. Current research indicates that this phenomena also occurs in nonlinear optics and appears to be universal in character. This infinite dimensional and possibly universal chaotic dynamics will be studied in detail.The dynamics of wave systems with large amplitude is often referred to as nonlinear wave motion. Unlike small amplitude phenomena where substantial and wide ranging theory is available, the mathematical investigation of nonlinear wave motion is still at an early stage of development. Nonlinear wave equations, such as the ones described in this proposal, are centrally important in many physical applications. Two examples are water waves and nonlinear optics, including fiber optic communications. Extremely stable, localized nonlinear waves called solitons, is a subject which is closely related to the research investigations in this project. The study of nonlinear optics has focused in recent years on the study of localized large amplitude pulses such as solitons. Such pulses, are used in a variety of ways such as the shaping and controlling of light beams. In fiber optic communications, understanding the properties of large amplitude optical pulses are important for the next generation of communication systems. The mathematical discoveries made in the field of nonlinear fiber optic waves only a few years years ago are now at the cusp of commercial application. It is expected that publication of all new results will be published in prominent journals.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Ablowitz其他文献

Mark Ablowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Ablowitz', 18)}}的其他基金

Nonlinear Wave Motion
非线性波动
  • 批准号:
    2306290
  • 财政年份:
    2023
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    2005343
  • 财政年份:
    2020
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1712793
  • 财政年份:
    2017
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1310200
  • 财政年份:
    2013
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0905779
  • 财政年份:
    2009
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0604151
  • 财政年份:
    2006
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical and Computational Meghods for High-Performance Lightwave Systems
协作研究:高性能光波系统的数学和计算方法
  • 批准号:
    0505352
  • 财政年份:
    2005
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Mathematical and Computational Methods for High-Data-Rate Communications
合作研究:FRG:高数据速率通信的数学和计算方法
  • 批准号:
    0101340
  • 财政年份:
    2001
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0070792
  • 财政年份:
    2000
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Wavelength Division Multiplexing in Soliton Communications
孤子通信中的波分复用
  • 批准号:
    9800152
  • 财政年份:
    1998
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Continuing Grant

相似国自然基金

海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
  • 批准号:
    52371346
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于气-海-浪-冰区域耦合模式的海浪对南极海冰影响研究
  • 批准号:
    42376237
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Nonlinear Wave Motion
非线性波动
  • 批准号:
    2306290
  • 财政年份:
    2023
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    2005343
  • 财政年份:
    2020
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1712793
  • 财政年份:
    2017
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1310200
  • 财政年份:
    2013
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Standard Grant
Study on multi-directional irregular wave field inducing strong nonlinear phenomena and ship motion
强非线性多向不规则波场与船舶运动研究
  • 批准号:
    23246152
  • 财政年份:
    2011
  • 资助金额:
    $ 21.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了