Nonlinear Wave Motion

非线性波动

基本信息

  • 批准号:
    2005343
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Nonlinear wave motion relates to the study of how high-power signals are transmitted and occur widely in applications. Some of the applications include surface water waves, rogue waves in the ocean, tsunamis, optical waves such as those that occur in waveguides and lasers, acoustic waves, and associated shock waves. This research effort focuses on solving a number of open problems that will substantially extend the ability of mathematicians to explain the behavior of large power wave phenomena that arise widely in applications while developing a deeper understanding of this behavior. A postdoctoral associate and undergraduate students will be trained through active participation in this research.The mathematical analysis of nonlinear wave motion presents difficulties because the underlying equations are nonlinear for which there is far less mathematical understanding than small power linear waves. One of the methods that can be used to analyze a class of nonlinear wave equations discussed in this proposal is termed the inverse scattering transform (IST). The PI has experience with this method and has found new classes of physically significant equations with interesting underlying symmetries to which IST can be applied. The method also applies to multidimensional equations and associated solutions which decay in all directions. Key properties of these latter solutions will be understood, and they can be connected to fundamental equations in quantum mechanics and optics. Research will also be conducted on a class of waves called dispersive shock waves (DSWs). DSWs are shock waves that are dispersive in nature; the underlying equations are dispersive not dissipative. Consequently, DSWs are not like atmospheric shock waves which are are strongly affected by dissipation. DSWs arise in many applications including water waves, nonlinear optics, plasma physics, and Bose-Einstein condensation amongst many others. The theory of DSWs will be extended in order to obtain improved approximations to the underlying equations in one dimension and a detailed multidimensional analysis will be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非线性波动涉及高功率信号如何传输以及如何在应用中广泛发生的研究。一些应用包括表面水波、海洋中的异常波、海啸、光波(例如波导和激光中出现的光波)、声波以及相关的冲击波。这项研究工作的重点是解决许多开放性问题,这些问题将大大扩展数学家解释应用中广泛出现的大功率波现象行为的能力,同时加深对这种行为的理解。通过积极参与这项研究,将培养一名博士后和本科生。非线性波运动的数学分析存在困难,因为基础方程是非线性的,与小功率线性波相比,其数学理解要少得多。可用于分析本提案中讨论的一类非线性波动方程的方法之一称为逆散射变换(IST)。 PI 具有使用此方法的经验,并发现了具有有趣的基础对称性的新类物理重要方程,可以应用 IST。该方法还适用于在所有方向上衰减的多维方程和相关解。后面这些解决方案的关键属性将被理解,并且它们可以与量子力学和光学中的基本方程联系起来。还将对一类称为色散冲击波(DSW)的波进行研究。 DSW 是本质上具有色散性的冲击波;基本方程是色散的而不是耗散的。因此,DSW 不像大气冲击波那样受到耗散的强烈影响。 DSW 出现在许多应用中,包括水波、非线性光学、等离子体物理学和玻色-爱因斯坦凝聚等。 DSW 的理论将得到扩展,以获得一维基础方程的改进近似,并将开发详细的多维分析。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrable space-time shifted nonlocal nonlinear equations
  • DOI:
    10.1016/j.physleta.2021.127516
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    M. Ablowitz;Z. Musslimani
  • 通讯作者:
    M. Ablowitz;Z. Musslimani
Nonlinear waves and the Inverse Scattering Transform
  • DOI:
    10.1016/j.ijleo.2023.170710
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    M. Ablowitz
  • 通讯作者:
    M. Ablowitz
Peierls-Nabarro barrier effect in nonlinear Floquet topological insulators
非线性 Floquet 拓扑绝缘体中的 Peierls-Nabarro 势垒效应
  • DOI:
    10.1103/physreve.103.042214
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ablowitz, Mark J.;Cole, Justin T.;Hu, Pipi;Rosenthal, Peter
  • 通讯作者:
    Rosenthal, Peter
On the Whitham system for the (2+1)‐dimensional nonlinear Schrödinger equation
(2 1)维非线性薛定谔方程的Whitham系统
  • DOI:
    10.1111/sapm.12543
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ablowitz, Mark J.;Cole, Justin T.;Rumanov, Igor
  • 通讯作者:
    Rumanov, Igor
Transverse Instability of Rogue Waves
异常波的横向不稳定性
  • DOI:
    10.1103/physrevlett.127.104101
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ablowitz, Mark J.;Cole, Justin T.
  • 通讯作者:
    Cole, Justin T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Ablowitz其他文献

Mark Ablowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Ablowitz', 18)}}的其他基金

Nonlinear Wave Motion
非线性波动
  • 批准号:
    2306290
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1712793
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1310200
  • 财政年份:
    2013
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0905779
  • 财政年份:
    2009
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0604151
  • 财政年份:
    2006
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical and Computational Meghods for High-Performance Lightwave Systems
协作研究:高性能光波系统的数学和计算方法
  • 批准号:
    0505352
  • 财政年份:
    2005
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0303756
  • 财政年份:
    2003
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Mathematical and Computational Methods for High-Data-Rate Communications
合作研究:FRG:高数据速率通信的数学和计算方法
  • 批准号:
    0101340
  • 财政年份:
    2001
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0070792
  • 财政年份:
    2000
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Wavelength Division Multiplexing in Soliton Communications
孤子通信中的波分复用
  • 批准号:
    9800152
  • 财政年份:
    1998
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant

相似国自然基金

台风-海浪作用下考虑多种失效模式的浮式风力机结构可靠度研究
  • 批准号:
    52308507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黑潮区星载合成孔径雷达海面风和海浪探测研究
  • 批准号:
    42376174
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于气-海-浪-冰区域耦合模式的海浪对南极海冰影响研究
  • 批准号:
    42376237
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:

相似海外基金

Nonlinear Wave Motion
非线性波动
  • 批准号:
    2306290
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1712793
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    1310200
  • 财政年份:
    2013
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Study on multi-directional irregular wave field inducing strong nonlinear phenomena and ship motion
强非线性多向不规则波场与船舶运动研究
  • 批准号:
    23246152
  • 财政年份:
    2011
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Nonlinear Wave Motion
非线性波动
  • 批准号:
    0905779
  • 财政年份:
    2009
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了