The structure of transformation group C*-algebras

变换群C*-代数的结构

基本信息

  • 批准号:
    0302401
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-11-30
  • 项目状态:
    已结题

项目摘要

AbstractPhillipsThe Principal Investigator, N. Christopher Phillips, proposes to follow up on his recent joint work with Qing Lin on crossed products by minimal diffeomorphisms, and on his recent results on crossed products by free minimal actions of finitely generated free abelian groups on the Cantor set. These results, and particularly the methods of proof, suggest that much stronger theorems should hold. Specifically, consider a minimal and essentially free action of a countable amenable group on a compact metric space with finite covering dimension. The ultimate goal is to prove that the transformation group C*-algebra of such an action is a direct limit, with no dimension growth, of recursive subhomogeneous C*-algebras. In particular, it should have stable rank one, real rank zero or one, and cancellation of projections. While the conjecture as stated is still far from being proved, the Principal Investigator hopes to make substantial progress by analyzing various aspects of it in isolation from each other; the idea is to put the pieces together afterwards. The Principal Investigator also proposes to investigate, where appropriate, the smooth counterparts of such algebras, to investigate the isomorphism classification of the resulting C*-algebras, and to investigate connections with orbit equivalence problems in topological dynamics.A dynamical system consists of a space and a collection of transformations of this space satisfying suitable mathematical conditions. As an example, consider the set of possible states of a physical system and its time evolution: the transformations specify for a given time and initial state what state the system will be in after that much time has passed. Another example would be a physical space and its underlying symmetries, such as the Lorentz group acting on space-time in special relativity. If the relation between the space and the transformations is simple, the dynamical system can be studied directly. When this relation is complicated, it is often useful to introduce additional objects; one natural such object is the transformation group C*-algebra. An additional reason for studying this algebra is that sometimes objects of physical interest are more closely related to it than to the original dynamical system; an example is the Schroedinger operator for an electron moving in a quasicrystal. The purpose of this project is to understand the transformation group C*-algebras in cases in which the dynamical system is complicated, but in which the C*-algebra seems likely to be amenable to analysis. (This incluse the quasicrystal case.) It also seeks to better understand the relation between the dynamical system and the C*-algebra, and to begin the analysis, in appropriate cases, of objects that are related to the C*-algebra but preserve more information about the original dynamics.
摘要Phillips 首席研究员 N. Christopher Phillips 提议跟进他最近与 Qing Lin 在最小微分同胚交叉积方面的合作,以及他最近在康托集上有限生成的自由阿贝尔群的自由最小作用交叉积方面的结果。这些结果,特别是证明方法,表明更强的定理应该成立。具体来说,考虑可数服从群在具有有限覆盖维数的紧凑度量空间上的最小且本质上自由的动作。最终目标是证明这种作用的变换群 C* 代数是递归次齐次 C* 代数的直接极限,没有维度增长。特别是,它应该具有稳定的排名一、真实的排名零或一以及预测的取消。虽然上述猜想还远未得到证实,但首席研究员希望通过对各个方面进行单独分析,取得实质性进展;我们的想法是随后将各个部分组合在一起。首席研究员还建议在适当的情况下研究此类代数的平滑对应项,研究所得 C* 代数的同构分类,并研究与拓扑动力学中轨道等效问题的联系。动力系统由空间组成以及满足适当数学条件的该空间的变换的集合。 举个例子,考虑物理系统的一组可能状态及其时间演化:转换指定给定时间和初始状态在经过这么长时间后系统将处于什么状态。另一个例子是物理空间及其基本对称性,例如狭义相对论中作用于时空的洛伦兹群。如果空间与变换之间的关系简单,则可以直接研究动力系统。当这种关系很复杂时,引入附加对象通常很有用;一个自然的这样的对象是变换群 C* 代数。研究这个代数的另一个原因是,有时物理感兴趣的物体与它的关系比与原始动力系统的关系更密切。一个例子是电子在准晶体中移动的薛定谔算子。该项目的目的是在动力系统复杂但 C* 代数似乎易于分析的情况下理解变换群 C* 代数。 (这包括准晶体情况。)它还旨在更好地理解动力系统和 C* 代数之间的关系,并在适当的情况下开始分析与 C* 代数相关但保留的对象有关原始动态的更多信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Norman Phillips其他文献

Norman Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Norman Phillips', 18)}}的其他基金

NSF-BSF: C*-algebras and Dynamics Beyond the Elliott Program
NSF-BSF:艾略特纲领之外的 C* 代数和动力学
  • 批准号:
    2400332
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Dynamics and Operator Algebras beyond the Elliott Classification Program
NSF-BSF:艾略特分类计划之外的动力学和算子代数
  • 批准号:
    2055771
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure of crossed products by amenable groups and classification of group actions
按服从群体划分的交叉产品结构和群体行为分类
  • 批准号:
    1501144
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Support for US participants in the 2012 West Coast Operator Algebra Seminar
为 2012 年西海岸算子代数研讨会美国参与者提供支持
  • 批准号:
    1246668
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Classification of group actions and structure of transformation group C*-algebras
群作用的分类和变换群C*-代数的结构
  • 批准号:
    1101742
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Support for US participants in the 2010 West Coast Operator Algebra Seminar
为 2010 年西海岸算子代数研讨会美国参与者提供支持
  • 批准号:
    1036073
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Group actions on C*-algebras and their crossed products
C* 代数及其交叉积的群作用
  • 批准号:
    0701076
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Special Meeting: Fields Operator Algebras Program--International US Participation
特别会议:场算子代数项目--美国国际参与
  • 批准号:
    0649696
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Structure of Crossed Product C*-algebras
叉积C*-代数的结构
  • 批准号:
    0070776
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topological and Related Aspects of the Structure of C* - Algebras
C* 结构的拓扑和相关方面 - 代数
  • 批准号:
    9706850
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于液态金属弹性体的磁/温控导体绝缘体转变特性和机理研究
  • 批准号:
    52301193
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
  • 批准号:
    82303045
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
茉莉酸信号因子PbJAZ1响应光周期调控梨成花转变的分子机制
  • 批准号:
    32302515
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东南欧古-新特提斯转变构造-岩浆过程及动力学
  • 批准号:
    42320104007
  • 批准年份:
    2023
  • 资助金额:
    209 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Hemorrhagic transformation associated with delayed reperfusion in perinatal and childhood ischemic stroke: brain maturation-dependent role of leukocytes
与围产期和儿童缺血性卒中延迟再灌注相关的出血性转化:白细胞的脑成熟依赖性作用
  • 批准号:
    10811475
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
  • 批准号:
    10373650
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
  • 批准号:
    10551850
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
EXPLORE AND TARGET THE EPIGENETIC VULNERABILITY OF PAX3-FOXO1-DRIVEN RHABDOMYOSARCOMA
探索并针对 PAX3-FOXO1 驱动的横纹肌肉瘤的表观遗传脆弱性
  • 批准号:
    10521711
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
EXPLORE AND TARGET THE EPIGENETIC VULNERABILITY OF PAX3-FOXO1-DRIVEN RHABDOMYOSARCOMA
探索并针对 PAX3-FOXO1 驱动的横纹肌肉瘤的表观遗传脆弱性
  • 批准号:
    10649516
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了