Topological and Related Aspects of the Structure of C* - Algebras
C* 结构的拓扑和相关方面 - 代数
基本信息
- 批准号:9706850
- 负责人:
- 金额:$ 8.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2000-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Phillips The Principal Investigator, N. Christopher Phillips, proposes three lines of research: (1) work on the classification and structure of simple C*-algebras; (2) a functional analytic characterization of the algebra of smooth functions on a smooth manifold; and (3) a continuation of his previous work on exponential rank. In (1), he proposes to work with Qing Lin on understanding the structure of transformation group C*-algebras of minimal diffeomorphisms. The eventual goal is to show that they are direct limits of sub-homogeneous C*-algebras, which would put them close to the classifiable class of stably finite simple C*-algebras. Several already interesting intermediate results, such as cancellation results in the K-theory of these algebras, are closer to realization. He also proposes to follow up recent work on the purely infinite case of the classification in several ways: a possibility of interesting invariants in the non-nuclear case, a long shot possibility for proving that nuclearity implies the Universal Coefficient Theorem, and a very plausible approach to the real case of the known classification theorem. In (2), he proposes to try to prove a functional analytic characterization of the algebra of smooth functions on a smooth manifold, in an effort to gain a better understanding of what a noncommutative manifold should be. In (3), he proposes to search for a simple C*-algebra with large exponential rank, and to try to understand better the exponential rank of stable and homogeneous C*-algebras. The purpose of this project is to improve the understanding of he "simple" C*-algebras. A C*-algebra is a kind of algebraic system (somewhat like the set of real numbers, with its operations of addition, subtraction, multiplication, and division, but somewhat more complicated). It has additional structure which, roughly speaking, describes when something is "large" or "small" (again, somewhat like the set of real numbers). C*-algebras turn out to be one of the more impor tant kinds of structures in mathematics. They have significant applications to other parts of mathematics which at first sight seem rather unrelated (geometry, for example), and they are also one of the kinds of structure that is important in quantum mechanics, the (rather counterintuitive) physical theory needed to deal properly with atoms and other very small objects. The simple C*-algebras are those that cannot be broken into smaller pieces, and in some sense all C*-algebras are built out of them. The project has two main goals. One is to advance the understanding of the "internal structure" of simple C*-algebras, more or less to know about each one all that it is possible to know. This is relevant when they are used in other subjects. The other is to improve the knowledge of the classification of C*-algebras: one wants a complete list of all of them, with a recipe for deciding when two simple C*-algebras, obtained in different ways, are actually the same.
摘要菲利普斯(Phillips)主要研究员N. Christopher Phillips提出了三条研究:(1)简单C*-Algebras的分类和结构; (2)平滑歧管上平滑函数代数的功能分析表征; (3)他以前在指数级上的工作的延续。在(1)中,他提议与清林合作了解最小差异性的转化组C*代数的结构。最终的目标是表明它们是亚均匀c*-ergebras的直接限制,这将使它们接近可分类的稳定有限的简单C*-Algebras类。这些代数的K理论中的一些已经有趣的中间结果(例如取消结果)更接近实现。他还建议以几种方式跟进有关纯粹的分类案例的最新工作:在非核案例中有一种有趣的不变性的可能性,证明核性的长期可能性意味着通用系数定理,并且是对已知分类定理的真实情况的非常合理的方法。在(2)中,他提出试图证明平滑函数代数的功能分析表征,以便更好地了解非交通歧管的内容。在(3)中,他提议搜索具有指数级较高的简单C*-Algebra,并试图更好地理解稳定和同质C*-Algebras的指数等级。 该项目的目的是提高对HE“简单” C* - 代数的理解。 c* - 代数是一种代数系统(有点像一组实数,其加法,减法,乘法和除法的操作,但更复杂)。它具有附加的结构,该结构粗略地描述了何时“大”或“小”(同样,有点像实数集)。 C* - 代数被证明是数学中最重要的结构之一。它们对数学的其他部分具有重要的应用,乍一看似乎是无关的(例如几何形状),并且它们也是在量子力学中很重要的结构之一,即正确处理原子和其他非常小的物体所需的(相当反直觉的)物理理论。简单的c* - 代数是那些不能分成较小的碎片的代数,从某种意义上说,所有c*-ergebras都是由它们构建的。该项目有两个主要目标。一种是促进对简单C* - 代数的“内部结构”的理解,或多或少地了解每个人都有可能知道的一切。当它们用于其他主题时,这很重要。另一个是提高对C*-Algebras的分类知识:一个人想要一个完整的列表,并确定何时以不同方式获得的两个简单的C* - 代数何时实际上是相同的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norman Phillips其他文献
Norman Phillips的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Norman Phillips', 18)}}的其他基金
NSF-BSF: C*-algebras and Dynamics Beyond the Elliott Program
NSF-BSF:艾略特纲领之外的 C* 代数和动力学
- 批准号:
2400332 - 财政年份:2024
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
NSF-BSF: Dynamics and Operator Algebras beyond the Elliott Classification Program
NSF-BSF:艾略特分类计划之外的动力学和算子代数
- 批准号:
2055771 - 财政年份:2021
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
Structure of crossed products by amenable groups and classification of group actions
按服从群体划分的交叉产品结构和群体行为分类
- 批准号:
1501144 - 财政年份:2015
- 资助金额:
$ 8.34万 - 项目类别:
Continuing Grant
Support for US participants in the 2012 West Coast Operator Algebra Seminar
为 2012 年西海岸算子代数研讨会美国参与者提供支持
- 批准号:
1246668 - 财政年份:2012
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
Classification of group actions and structure of transformation group C*-algebras
群作用的分类和变换群C*-代数的结构
- 批准号:
1101742 - 财政年份:2011
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
Support for US participants in the 2010 West Coast Operator Algebra Seminar
为 2010 年西海岸算子代数研讨会美国参与者提供支持
- 批准号:
1036073 - 财政年份:2010
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
Group actions on C*-algebras and their crossed products
C* 代数及其交叉积的群作用
- 批准号:
0701076 - 财政年份:2007
- 资助金额:
$ 8.34万 - 项目类别:
Continuing Grant
Special Meeting: Fields Operator Algebras Program--International US Participation
特别会议:场算子代数项目--美国国际参与
- 批准号:
0649696 - 财政年份:2007
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
The structure of transformation group C*-algebras
变换群C*-代数的结构
- 批准号:
0302401 - 财政年份:2003
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
The Structure of Crossed Product C*-algebras
叉积C*-代数的结构
- 批准号:
0070776 - 财政年份:2000
- 资助金额:
$ 8.34万 - 项目类别:
Continuing Grant
相似国自然基金
与弱分异花岗岩有关的钨矿床中W的关键富集机制:以鄂东南龙角山-付家山矿床为例
- 批准号:42302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YTHDF1通过m6A修饰调控耳蜗毛细胞炎症反应在老年性聋中的作用机制研究
- 批准号:82371140
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
有关特殊交换群上Davenport常数与广义EGZ常数的研究
- 批准号:12301425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SOD1介导星形胶质细胞活化调控hNSC移植细胞存活的机制研究
- 批准号:82372136
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
有关趋化Navier-Stokes方程的定性研究
- 批准号:12371231
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
相似海外基金
Role of APOE in endosomal processing of alpha-synuclein
APOE 在 α-突触核蛋白内体加工中的作用
- 批准号:
10739682 - 财政年份:2023
- 资助金额:
$ 8.34万 - 项目类别:
New aspects of kimberlite-related metasomatism
与金伯利岩相关的交代作用的新方面
- 批准号:
RGPIN-2019-03988 - 财政年份:2022
- 资助金额:
$ 8.34万 - 项目类别:
Discovery Grants Program - Individual
Diet and foraging-related aspects of host-parasite dynamics in freshwater systems
淡水系统中宿主-寄生虫动态的饮食和觅食相关方面
- 批准号:
RGPIN-2020-04622 - 财政年份:2022
- 资助金额:
$ 8.34万 - 项目类别:
Discovery Grants Program - Individual
Sleeping well in a changing climate: The effects of rising temperatures and extreme weather events on sleep and other aspects of health in rural Appalachia
在不断变化的气候中睡个好觉:气温上升和极端天气事件对阿巴拉契亚农村地区睡眠和其他健康方面的影响
- 批准号:
10837427 - 财政年份:2021
- 资助金额:
$ 8.34万 - 项目类别:
New aspects of kimberlite-related metasomatism
与金伯利岩相关的交代作用的新方面
- 批准号:
RGPIN-2019-03988 - 财政年份:2021
- 资助金额:
$ 8.34万 - 项目类别:
Discovery Grants Program - Individual