Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
基本信息
- 批准号:0300477
- 负责人:
- 金额:$ 23.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Nicola Garofalo, Purdue UniversityDMS-0300477Abstract:The development of analysis and geometry during the past century has been greatly influenced by the desire of solving various basic problems involving some special partial differential equations, mostly of nonlinear type. While most of these problems have by now been settled in the classical Euclidean or Riemannian settings, their sub-Riemannian counterparts presently form a body of fundamental open questions. One of the broader objectives of this proposal is to study some of them. This PI is concerned with developing a new theory of minimal surfaces, or more in general surfaces with bounded mean curvature, in sub-Riemannian spaces, study their regularity and classify the isoperimetric sets in some model spaces with symmetries. He proposes a calculus on hypersurfaces which hinges on the idea of horizontal Gauss map, and leads to a new notion of mean curvature The analysis of the ensuing nonlinear equations and systems constitutes a challenging new avenue of study. Within such calculus, minimal surfaces are thus hypersurfaces of zero mean curvature, and a problem of fundamental interest is a sub-Riemannian version of the famous conjecture of Bernstein. The latter displays a marked discrepancy with its classical ancestor and there is a host of new geometric phenomena connected with the singularities of the Gauss map which generically occur at those points where the subbundle which generates the sub-Riemannian structure becomes part of the tangent space to the hypersurface. Given the role of the classical Bernstein problem in the development of last century's mathematics, it is foreseeable that the theory of sub-Riemannian minimal surfaces and the corresponding Bernstein problem will sparkle a broad development. The PI also proposes to find the minimizers in the Folland-Stein embedding for groups of Heisenberg type and Siegel domain of type 2, and thereby compute the best constants. This program is instrumental to attacking the compact CR Yamabe problem for CR manifolds of higher codimension. In connection with the CR Yamabe problem the PI proposes to investigate a CR version of the positive mass theorem from relativity due to Schoen and Yau. It is expected that the theory of minimal surfaces previously mentioned will play an important role. Another emerging theory in sub-Riemannian geometry is that of equations of Monge-Amp\`ere type, which occupy a central position in geometry as well as in the calculus of variations in view of their tight connection with the problem of mass transport. The PI proposes to investigate a new estimate connected with a sub-Riemannian version of the geometric maximum principle of Alexandrov, Bakelman, and Pucci. In joint work he has recently obtained results for the appropriate class of ``convex" functions, and, inspired by N.Krylov's approach, established monotonicity type results for a functional involving the symmetrized horizontal Hessian along with some appropriate commutators. Another problem included in this proposal is the optimal regularity for nonlinear equations arising in the study of quasiregular mappings between Carnot groups. This is presently a fundamental open question and, without its solution, it will be impossible to make substantial advances in nonlinear potential theory for sub-Riemannian spaces. In this connection the PI also plans to analyze the delicate question of the uniqueness of the fundamental solution and Green function, and study the geometric properties of their level sets. Other directions of investigation are the analysis of boundary value problems (Dirichlet, Neumann) for subelliptic equations and their associated heat flows, the study of free boundary problems, and the analysis of global properties of solutions to some pde's arising in geometry and mathematical physics. Partial differential equations and systems formed by the latter are the basic laws, which describe most natural phenomena. An understanding of the physical world also requires grasping the underlying geometric structure of the latter in its various forms. The present proposal belongs to the mainstream of research, which sits at the confluence of the theory of partial differential equations and systems, mostly of nonlinear type, and their connections with an emerging type of geometry, called sub-Riemannian geometry. Both theories have witnessed an explosion of interest in the last decade and they continue to attract the interest of various schools of mathematicians both nationwide and abroad. This proposal is also concerned with problems from mathematical physics and geometry in which symmetry plays an important role. Symmetry is present everywhere in nature, a remarkable instance being the fundamental laws of gravitation and electrostatic attraction. The study of conditions under which a natural phenomenon develops symmetries is important both for practical consequences and for its implications in the furthering of our knowledge.
PI:Nicola Garofalo,普渡大学DMS-0300477摘要:过去一个世纪分析和几何的发展受到解决涉及一些特殊偏微分方程(大多数是非线性类型)的各种基本问题的渴望的极大影响。虽然这些问题中的大多数现在已经在经典欧几里得或黎曼环境中得到解决,但它们的亚黎曼对应问题目前形成了一系列基本的开放问题。该提案更广泛的目标之一是研究其中的一些。该 PI 涉及开发一种新的最小曲面理论,或者更多的是在亚黎曼空间中具有有界平均曲率的一般曲面,研究它们的规律性并对某些具有对称性的模型空间中的等周集进行分类。他提出了一种基于水平高斯图思想的超曲面微积分,并引出了平均曲率的新概念。对随后的非线性方程和系统的分析构成了一个具有挑战性的新研究途径。在这样的微积分中,最小曲面是零平均曲率的超曲面,并且基本感兴趣的问题是著名的伯恩斯坦猜想的亚黎曼版本。后者与其经典祖先表现出明显的差异,并且存在许多与高斯图的奇点相关的新几何现象,这些现象通常发生在生成亚黎曼结构的子丛成为切空间的一部分的那些点上。超曲面。鉴于经典伯恩斯坦问题在上世纪数学发展中的重要作用,可以预见,次黎曼极小曲面理论及相应的伯恩斯坦问题将迎来广阔的发展。 PI 还建议寻找海森堡型群和 2 型西格尔域的 Folland-Stein 嵌入中的最小化器,从而计算最佳常数。该程序有助于解决更高余维 CR 流形的紧凑 CR Yamabe 问题。关于 CR Yamabe 问题,PI 建议研究由 Schoen 和 Yau 提出的相对论正质量定理的 CR 版本。预计前面提到的最小曲面理论将发挥重要作用。亚黎曼几何中的另一个新兴理论是蒙日-安培型方程,由于其与质量传递问题的紧密联系,它在几何学以及变分学中占据着中心地位。 PI 提议研究与 Alexandrov、Bakelman 和 Pucci 的几何极大值原理的亚黎曼版本相关的新估计。在联合工作中,他最近获得了适当类别的“凸”函数的结果,并且受到 N.Krylov 方法的启发,为涉及对称水平 Hessian 矩阵以及一些适当的交换子的函数建立了单调性类型结果。这个建议是卡诺群之间拟正则映射研究中出现的非线性方程的最优正则性。这是目前一个基本的悬而未决的问题,如果没有它的解决方案,就不可能取得实质性进展。在这方面,PI 还计划分析基本解和格林函数的唯一性这一棘手问题,并研究其水平集的几何性质。亚椭圆方程及其相关热流的边值问题(狄利克雷、诺伊曼)的研究、自由边界问题的研究以及几何和数学物理中出现的某些偏微分方程解的全局性质分析。偏微分方程及其形成的系统是描述大多数自然现象的基本规律。对物理世界的理解还需要掌握后者各种形式的基本几何结构。目前的建议属于研究的主流,它位于偏微分方程和系统理论(主要是非线性类型)及其与新兴几何类型(称为亚黎曼几何)的联系的交汇处。这两种理论在过去十年中都引起了人们的极大兴趣,并且继续吸引着国内外各数学家的兴趣。该提议还涉及数学物理和几何中的问题,其中对称性起着重要作用。对称性在自然界中无处不在,一个显着的例子是万有引力和静电引力的基本定律。研究自然现象产生对称性的条件对于实际后果及其对加深我们的知识的影响都很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Garofalo其他文献
On an evolution equation in sub-Finsler geometry
- DOI:
- 发表时间:
2024-02 - 期刊:
- 影响因子:0
- 作者:
Nicola Garofalo - 通讯作者:
Nicola Garofalo
Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips
图形条的亚黎曼微积分和周长的单调性
- DOI:
10.1007/s00209-009-0533-8 - 发表时间:
2008 - 期刊:
- 影响因子:0.8
- 作者:
D. Danielli;Nicola Garofalo;Nicola Garofalo;D. Nhieu - 通讯作者:
D. Nhieu
A Rellich type estimate for a subelliptic Helmholtz equation with mixed homogeneities
混合齐次亚椭圆亥姆霍兹方程的Rellich型估计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Agnid Banerjee;Nicola Garofalo - 通讯作者:
Nicola Garofalo
Nicola Garofalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola Garofalo', 18)}}的其他基金
Monotonicity formulas, nonlinear PDE's and sub-Riemannian Geometry
单调性公式、非线性偏微分方程和亚黎曼几何
- 批准号:
1001317 - 财政年份:2010
- 资助金额:
$ 23.8万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations in Sub-Riemannian Geometry
亚黎曼几何中的非线性偏微分方程
- 批准号:
0701001 - 财政年份:2007
- 资助金额:
$ 23.8万 - 项目类别:
Continuing Grant
Non-linear equations in analysis and geometry
分析和几何中的非线性方程
- 批准号:
0070492 - 财政年份:2000
- 资助金额:
$ 23.8万 - 项目类别:
Continuing Grant
Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
- 批准号:
9706892 - 财政年份:1997
- 资助金额:
$ 23.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 23.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Unique Continuation, Quantitative Properties of Solutions and Symmetry for PDE's
数学科学:“偏微分方程的独特连续性、解的定量性质和对称性
- 批准号:
9104023 - 财政年份:1991
- 资助金额:
$ 23.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
9096158 - 财政年份:1989
- 资助金额:
$ 23.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
8905338 - 财政年份:1989
- 资助金额:
$ 23.8万 - 项目类别:
Standard Grant
相似国自然基金
Banach空间中非线性积微分系统的一些问题
- 批准号:
- 批准年份:2019
- 资助金额:53 万元
- 项目类别:面上项目
线性或非线性约束下一些排序问题的复杂性和算法
- 批准号:11801589
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非线性偏微分方程的最小二乘谱方法及在间断问题计算中一些应用
- 批准号:11701119
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高铁二次特征值问题及其相关一些方程的数值方法研究
- 批准号:11671105
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
有关非迷向的完全非线性积分微分算子的一些问题
- 批准号:11526034
- 批准年份:2015
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
- 批准号:
RGPIN-2015-06342 - 财政年份:2020
- 资助金额:
$ 23.8万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
- 批准号:
RGPIN-2015-06342 - 财政年份:2019
- 资助金额:
$ 23.8万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
- 批准号:
RGPIN-2015-06342 - 财政年份:2018
- 资助金额:
$ 23.8万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
- 批准号:
RGPIN-2015-06342 - 财政年份:2017
- 资助金额:
$ 23.8万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
- 批准号:
477896-2015 - 财政年份:2017
- 资助金额:
$ 23.8万 - 项目类别:
Discovery Grants Program - Accelerator Supplements