CISE Research Resources: Instrumentation for Experimental Research in Machine Learning, Collaborative Filtering, and Virtual Environments

CISE 研究资源:机器学习、协同过滤和虚拟环境实验研究仪器

基本信息

  • 批准号:
    0224012
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

EIA 0224012Dietterich, Thomas G.Herlocker, Jonathan L.Metoyer, Ronald Oregon State University Title: CISE RR: Instrumentation for Experimental Research in Machine Learning, Collaborative Filtering, and Virtual Environments This project, upgrading the current cluster for use in large pre-computations that enable effective real-time performance, supports equipment servicing the following four projects:Real Time Animation of Human Characters for Use in Immersive Training Environments,Probabilistic Recommendation Methods for Collaborative Filtering (CF),Machine Learning for Spatial and Sequential Data, andReinforcement Learning for Learning Search Control Heuristics with Applications to Protein Structure Determination from Nuclear Magnetic Resonance Spectroscopy and to Real-Time Animation.The first project aims at automatically selecting and ordering short sequences of captured motion to drive a character along a trajectory while maintaining naturally looking transitions between the sequences. The project exploits off-line reinforcement learning (dynamic programming) algorithms to pre-compute a policy for moving between any pair of poses under a range of trajectory constraints. Real-time control of characters is then permitted without the need for large run-time searches. The second project utilizes collaborative filtering (CF) systems that can predict a probability distribution over the rating of an item. Currently CF, a method by which multiple computer users indirectly help each other make decisions and identify solutions to problems, provides ratings or votes returning the items with the higher number of votes, rather than attaching a probability. The equipment will speed the research process by enabling the testing of un-optimized prototype implementations of new algorithms, and hence allow the evaluation of proposed algorithms without the delay of manual optimization. The third project deals with emerging applications of machine learning (e.g., computer intrusion detection, information extraction from web pages, remote sensing) involving temporal, sequential, or spatial data where nearby data points are typically correlated. The PIs have developed a parallel implementation of a sequential analysis method for conditional random fields (CRFs) that gives near-linear speedups in the computation time, but which is limited in the size of data sets that can be processed. The cluster upgrade should yield a faster solution and allow consideration of larger data sets. The last project, experiments with two new algorithms for reinforcement learning that scale to large search spaces as long as the number of reachable states is small enough to fit in main memory. One method combines linear programming with support-vector machine techniques; the other combines gradient descent search with dynamic programming. These methods, requiring an expensive off-line computation, result in an efficient heuristic that can be applied to the run-time search. Moreover, the cluster will be used by students in a parallel computation course.
EIA 0224012Dietterich、Thomas G.Herlocker、Jonathan L.Metoyer、罗纳德俄勒冈州立大学 标题:CISE RR:机器学习、协作过滤和虚拟环境实验研究仪器 该项目升级当前集群以用于大型预计算能够实现有效的实时性能,支持服务于以下四个项目的设备:用于沉浸式训练的人物实时动画环境、协同过滤 (CF) 的概率推荐方法、空间和序列数据的机器学习、学习搜索控制启发式的强化学习及其在核磁共振波谱确定蛋白质结构和实时动画中的应用。第一个项目旨在自动选择和排序捕捉到的运动的短序列,以沿着轨迹驱动角色,同时保持序列之间看起来自然的过渡。该项目利用离线强化学习(动态编程)算法来预先计算在一系列轨迹约束下在任意一对姿势之间移动的策略。然后允许对字符进行实时控制,而不需要大量的运行时搜索。第二个项目利用协同过滤(CF)系统,可以预测项目评级的概率分布。目前,CF是一种多个计算机用户间接帮助彼此做出决策并确定问题解决方案的方法,它提供评级或投票,返回得票数较高的项目,而不是附加概率。该设备将通过测试新算法的未优化原型实现来加速研究过程,从而允许在不延迟手动优化的情况下评估所提出的算法。第三个项目涉及机器学习的新兴应用(例如,计算机入侵检测、网页信息提取、遥感),涉及时间、顺序或空间数据,其中附近的数据点通常是相关的。 PI 开发了一种针对条件随机场 (CRF) 的顺序分析方法的并行实现,该方法可在计算时间上实现近线性加速,但可处理的数据集大小受到限制。集群升级应该会产生更快的解决方案并允许考虑更大的数据集。最后一个项目实验了两种用于强化学习的新算法,只要可到达状态的数量足够小以适合主存储器,它们就可以扩展到大型搜索空间。一种方法将线性规划与支持向量机技术相结合;另一种将梯度下降搜索与动态规划结合起来。这些方法需要昂贵的离线计算,从而产生可应用于运行时搜索的有效启发式方法。此外,学生将在并行计算课程中使用该集群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Dietterich其他文献

Thomas Dietterich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Dietterich', 18)}}的其他基金

Collaborative Research: CompSustNet: Expanding the Horizons of Computational Sustainability
合作研究:CompSustNet:拓展计算可持续性的视野
  • 批准号:
    1521687
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Algorithms and Cyberinfrastructure for High-Precision Automated Quality Control of Hydro-Meteo Sensor Networks
III:媒介:合作研究:Hydro-Meteo 传感器网络高精度自动化质量控制的算法和网络基础设施
  • 批准号:
    1514550
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Computing and Visualizing Optimal Policies for Ecosystem Management
Cyber​​SEES:类型 2:计算和可视化生态系统管理的最佳策略
  • 批准号:
    1331932
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: AVATOL - Next Generation Phenomics for the Tree of Life
合作研究:AVATOL - 生命之树的下一代表型组学
  • 批准号:
    1208272
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
  • 批准号:
    1125228
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
II-EN: A compute cluster and software tools for Monte-Carlo methods in artificial intelligence
II-EN:人工智能中蒙特卡罗方法的计算集群和软件工具
  • 批准号:
    0958482
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society
合作研究:计算可持续性:可持续环境、经济和社会的计算方法
  • 批准号:
    0832804
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
RI: Machine Learning for Robust Recognition of Invertebrate Specimens in Ecological Science
RI:机器学习在生态科学中对无脊椎动物标本的鲁棒识别
  • 批准号:
    0705765
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SGER: Exploiting Contextual Knowledge to Design Input Representations for Machine Learning
SGER:利用上下文知识设计机器学习的输入表示
  • 批准号:
    0335525
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Off-the-shelf Learning Algorithms for Structural Supervised Learning
用于结构监督学习的现成学习算法
  • 批准号:
    0307592
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向数字孪生边缘网络的容器调度和资源优化研究
  • 批准号:
    62302048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数字孪生的工业物联网资源自演进智能调度研究
  • 批准号:
    62302301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
教育资源配置对住房市场的影响机制研究:理论模型、实证证据及福利效应
  • 批准号:
    72374203
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
个性化契约对个体及团队工作繁荣的影响机制研究:基于资源扩张与传递网络的动态视角
  • 批准号:
    72372054
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE-MSI: RPEP: CPS: A Resilient Cyber-Physical Security Framework for Next-Generation Distributed Energy Resources at Grid Edge
合作研究:CISE-MSI:RPEP:CPS:电网边缘下一代分布式能源的弹性网络物理安全框架
  • 批准号:
    2219733
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RPEP: CPS: A Resilient Cyber-Physical Security Framework for Next-Generation Distributed Energy Resources at Grid Edge
合作研究:CISE-MSI:RPEP:CPS:电网边缘下一代分布式能源的弹性网络物理安全框架
  • 批准号:
    2219734
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CISE Research Resources: Matching Advanced Visualization and Intelligent Data Mining to High-Performance Experimental Networks
CISE 研究资源:将高级可视化和智能数据挖掘与高性能实验网络相匹配
  • 批准号:
    0224306
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CISE Research Resources: Resources for Software Engineering Research
CISE 研究资源:软件工程研究资源
  • 批准号:
    0224368
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CISE Research Resources: Discourse Penn Treebank and Multimodal FORM: Development of Two Richly Annotated Corpora
CISE 研究资源:Discourse Penn Treebank 和 Multimodal FORM:两个注释丰富的语料库的开发
  • 批准号:
    0224417
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了