CISE Research Resources: Instrumentation for Experimental Research in Machine Learning, Collaborative Filtering, and Virtual Environments

CISE 研究资源:机器学习、协同过滤和虚拟环境实验研究仪器

基本信息

  • 批准号:
    0224012
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

EIA 0224012Dietterich, Thomas G.Herlocker, Jonathan L.Metoyer, Ronald Oregon State University Title: CISE RR: Instrumentation for Experimental Research in Machine Learning, Collaborative Filtering, and Virtual Environments This project, upgrading the current cluster for use in large pre-computations that enable effective real-time performance, supports equipment servicing the following four projects:Real Time Animation of Human Characters for Use in Immersive Training Environments,Probabilistic Recommendation Methods for Collaborative Filtering (CF),Machine Learning for Spatial and Sequential Data, andReinforcement Learning for Learning Search Control Heuristics with Applications to Protein Structure Determination from Nuclear Magnetic Resonance Spectroscopy and to Real-Time Animation.The first project aims at automatically selecting and ordering short sequences of captured motion to drive a character along a trajectory while maintaining naturally looking transitions between the sequences. The project exploits off-line reinforcement learning (dynamic programming) algorithms to pre-compute a policy for moving between any pair of poses under a range of trajectory constraints. Real-time control of characters is then permitted without the need for large run-time searches. The second project utilizes collaborative filtering (CF) systems that can predict a probability distribution over the rating of an item. Currently CF, a method by which multiple computer users indirectly help each other make decisions and identify solutions to problems, provides ratings or votes returning the items with the higher number of votes, rather than attaching a probability. The equipment will speed the research process by enabling the testing of un-optimized prototype implementations of new algorithms, and hence allow the evaluation of proposed algorithms without the delay of manual optimization. The third project deals with emerging applications of machine learning (e.g., computer intrusion detection, information extraction from web pages, remote sensing) involving temporal, sequential, or spatial data where nearby data points are typically correlated. The PIs have developed a parallel implementation of a sequential analysis method for conditional random fields (CRFs) that gives near-linear speedups in the computation time, but which is limited in the size of data sets that can be processed. The cluster upgrade should yield a faster solution and allow consideration of larger data sets. The last project, experiments with two new algorithms for reinforcement learning that scale to large search spaces as long as the number of reachable states is small enough to fit in main memory. One method combines linear programming with support-vector machine techniques; the other combines gradient descent search with dynamic programming. These methods, requiring an expensive off-line computation, result in an efficient heuristic that can be applied to the run-time search. Moreover, the cluster will be used by students in a parallel computation course.
EIA 0224012DIETTERICH,THOMAS G.HERLOCKER,JONATHAN L.METOYER,RONALD OREGON州立大学标题:CISE RR:机器学习,实验性研究仪器,该项目的机器学习,合作环境和虚拟环境的实验性研究,该项目为当前的项目升级,以实现实时效果,以实现实时效果:沉浸式培训环境,用于协作过滤的概率建议方法(CF),用于空间和顺序数据的机器学习,用于学习搜索搜索控制启发式的AndreInforkection学习,并应用于蛋白质结构从核磁共振光谱和实时动画中进行蛋白质结构确定。序列。该项目利用离线加固学习(动态编程)算法,以预先计算在一系列轨迹约束下任何一对姿势之间移动的策略。然后允许对字符的实时控制,而无需大量的运行时搜索。第二个项目利用协作过滤(CF)系统可以预测项目评级的概率分布。当前CF是一种方法,通过这种方法,多个计算机用户间接帮助彼此做出决策并确定问题的解决方案,并提供了返回项目的评级或投票,而不是附加概率。该设备将通过实现新算法的未优化原型实现的测试来加快研究过程,从而允许评估所提出的算法,而无需延迟手动优化。第三个项目涉及机器学习的新兴应用(例如,计算机入侵检测,从网页中提取信息,遥感)涉及时间,顺序或空间数据,这些数据通常与附近的数据点相关。 PI已开发了用于条件随机字段(CRF)的顺序分析方法的并行实现,该方法在计算时间内给出了近乎线性的加速,但在可以处理的数据集的大小上受到限制。集群升级应产生更快的解决方案,并允许考虑较大的数据集。最后一个项目,使用两种新算法进行强化学习的实验,只要可到达状态的数量足够小以适合主内存,就可以扩展到大型搜索空间。一种方法将线性编程与支持矢量机技术结合在一起;另一个结合了梯度下降搜索与动态编程。这些方法需要昂贵的离线计算,从而导致可以应用于运行时搜索的有效启发式。此外,学生将在平行计算课程中使用集群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Dietterich其他文献

Thomas Dietterich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Dietterich', 18)}}的其他基金

Collaborative Research: CompSustNet: Expanding the Horizons of Computational Sustainability
合作研究:CompSustNet:拓展计算可持续性的视野
  • 批准号:
    1521687
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Algorithms and Cyberinfrastructure for High-Precision Automated Quality Control of Hydro-Meteo Sensor Networks
III:媒介:合作研究:Hydro-Meteo 传感器网络高精度自动化质量控制的算法和网络基础设施
  • 批准号:
    1514550
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Computing and Visualizing Optimal Policies for Ecosystem Management
Cyber​​SEES:类型 2:计算和可视化生态系统管理的最佳策略
  • 批准号:
    1331932
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: AVATOL - Next Generation Phenomics for the Tree of Life
合作研究:AVATOL - 生命之树的下一代表型组学
  • 批准号:
    1208272
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
  • 批准号:
    1125228
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
II-EN: A compute cluster and software tools for Monte-Carlo methods in artificial intelligence
II-EN:人工智能中蒙特卡罗方法的计算集群和软件工具
  • 批准号:
    0958482
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society
合作研究:计算可持续性:可持续环境、经济和社会的计算方法
  • 批准号:
    0832804
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
RI: Machine Learning for Robust Recognition of Invertebrate Specimens in Ecological Science
RI:机器学习在生态科学中对无脊椎动物标本的鲁棒识别
  • 批准号:
    0705765
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SGER: Exploiting Contextual Knowledge to Design Input Representations for Machine Learning
SGER:利用上下文知识设计机器学习的输入表示
  • 批准号:
    0335525
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Off-the-shelf Learning Algorithms for Structural Supervised Learning
用于结构监督学习的现成学习算法
  • 批准号:
    0307592
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向通信资源受限的多智能体传输调度与控制协同优化研究
  • 批准号:
    62303124
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效低资源机器翻译模型设计及预训练方法研究
  • 批准号:
    62306284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低资源环境下的篇章级事件抽取研究
  • 批准号:
    62376177
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
特大城市分级诊疗资源的可达性与空间配置研究—以北京市为例
  • 批准号:
    42371256
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
空中智能反射面辅助通信的波束赋形与资源弹性按需管控技术研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

Collaborative Research: CISE-MSI: RPEP: CPS: A Resilient Cyber-Physical Security Framework for Next-Generation Distributed Energy Resources at Grid Edge
合作研究:CISE-MSI:RPEP:CPS:电网边缘下一代分布式能源的弹性网络物理安全框架
  • 批准号:
    2219733
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RPEP: CPS: A Resilient Cyber-Physical Security Framework for Next-Generation Distributed Energy Resources at Grid Edge
合作研究:CISE-MSI:RPEP:CPS:电网边缘下一代分布式能源的弹性网络物理安全框架
  • 批准号:
    2219734
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CISE Research Resources: Matching Advanced Visualization and Intelligent Data Mining to High-Performance Experimental Networks
CISE 研究资源:将高级可视化和智能数据挖掘与高性能实验网络相匹配
  • 批准号:
    0224306
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CISE Research Resources: Resources for Software Engineering Research
CISE 研究资源:软件工程研究资源
  • 批准号:
    0224368
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CISE Research Resources: Discourse Penn Treebank and Multimodal FORM: Development of Two Richly Annotated Corpora
CISE 研究资源:Discourse Penn Treebank 和 Multimodal FORM:两个注释丰富的语料库的开发
  • 批准号:
    0224417
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了