Stochastic Differential Systems Driven by Fractional Brownian Motion

分数布朗运动驱动的随机微分系统

基本信息

  • 批准号:
    0204613
  • 负责人:
  • 金额:
    $ 9.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

0204613Hu It is well-known that the fractional Brownian motions are not semimartingales. The powerful stochastic calculus for semimartingales are not applicable to them. Motivated by the urgent need from applications the principal investigator and his collaborators have developed a new stochastic calculus of Ito type based on the Wick product. He proposes to continue this research topic and to study the stochastic differential systems driven by fractional Brownian motions. First he shall study the existence, uniqueness and approximation of global solutions to stochastic differential systems driven by fractional Brownian motions. Many researchers have attempted to obtain result on these aspects with little success. The principal investigator has discovered a relationship between stochastic differential systems driven by fractional Brownian motions and quasilinear hyperbolic equations (of infinitely many variables). It is well-known that the latter equations are also difficult to solve. However, there are a number of results which are useful. This connection will lead to a better understanding of stochastic differential systems and the PI plans to explore this relation. Secondly, in application of the stochastic systems driven by fractional Brownian motions, one also needs to identify the coefficients and the Hurst parameter. The PI proposes to study one such identification problem and apply it to the investigation of the stochastic volatility model in financial market. To obtain the maximum benefit from a physical or social system, one needs to understand the system in the most precise way possible. This requires building a mathematical model for the dynamic evolution of the system. When the system is under the influence of some uncertain factors, the system should be modeled by a random process. Up to now one of the random processes which has received the most attention and has been studied the most is stochastic differential equations based on the so-called Brownian motion. Brownian motion has some nice properties such as Markovian: Its future state depends only on the present state and does not depend on the past. This simplicity makes the mathematics for it easy and very profound results have been achieved. In fact there have been enormous work on it over the past century. However, this elegant property also limits the applicability of such a random process, since it cannot be used to describe those systems whose future depend not only the present but also on past history! Fractional Brownian motions are random processes having this long range dependence and may be used to describe such systems. This proposal aims to construct mathematical tools for the fractional Brownian motions which have already found applications in hydrology, climatology, network traffic analysis, and finance. This research will have impact on these areas as well as in life science.
0204613Hu 众所周知,分数布朗运动不是半鞅。半鞅的强大随机微积分不适用于它们。出于应用的迫切需求,首席研究员和他的合作者基于 Wick 产品开发了一种新的 Ito 型随机微积分。他建议继续这个研究课题,研究由分数布朗运动驱动的随机微分系统。首先,他将研究由分数布朗运动驱动的随机微分系统的全局解的存在性、唯一性和近似性。许多研究人员试图在这些方面取得成果,但收效甚微。首席研究员发现了分数布朗运动驱动的随机微分系统与拟线性双曲方程(无限多个变量)之间的关系。众所周知,后面的方程也很难求解。然而,有许多有用的结果。这种联系将有助于更好地理解随机微分系统,PI 计划探索这种关系。其次,在分数布朗运动驱动的随机系统应用中,还需要识别系数和赫斯特参数。 PI建议研究这样一个识别问题,并将其应用于金融市场随机波动模型的研究。 为了从物理或社会系统中获得最大利益,人们需要以尽可能精确的方式了解该系统。这需要建立系统动态演化的数学模型。当系统受到某些不确定因素的影响时,应采用随机过程对系统进行建模。迄今为止,最受关注和研究最多的随机过程之一是基于所谓布朗运动的随机微分方程。布朗运动具有一些很好的特性,例如马尔可夫运动:它的未来状态仅取决于当前状态,而不取决于过去。这种简单性使得数学变得容易并且已经取得了非常深刻的结果。事实上,在过去的一个世纪里,人们对此进行了大量的工作。然而,这种优雅的属性也限制了这种随机过程的适用性,因为它不能用来描述那些未来不仅取决于现在而且取决于过去历史的系统!分数布朗运动是具有这种长程依赖性的随机过程,并且可用于描述此类系统。该提案旨在构建分数布朗运动的数学工具,该工具已在水文学、气候学、网络流量分析和金融领域得到应用。这项研究将对这些领域以及生命科学产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaozhong Hu其他文献

The novel intervention effect of cold green tea beverage on high-fat diet induced obesity in mice
冷绿茶饮料对高脂饮食诱导的小鼠肥胖的新干预作用
  • DOI:
    10.1016/j.jff.2020.104279
  • 发表时间:
    2020-11-13
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Hui Ma;Bowei Zhang;Yaozhong Hu;Xiang Li;Jin Wang;Feier Yang;Xuemeng Ji;Shuo Wang
  • 通讯作者:
    Shuo Wang
Tangent Processes on Wiener Space
维纳空间上的切线过程
  • DOI:
    10.1006/jfan.2001.3897
  • 发表时间:
    2001-10-16
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Yaozhong Hu;A. Üstünel;M. Zakai
  • 通讯作者:
    M. Zakai
Non-central limit of densities of some functionals of Gaussian processes
高斯过程某些泛函密度的非中心极限
  • DOI:
  • 发表时间:
    2024-06-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Bourguin;Thanh Dang;Yaozhong Hu
  • 通讯作者:
    Yaozhong Hu
Backward Euler method for stochastic differential equations with non-Lipschitz coefficients driven by fractional Brownian motion
分数布朗运动驱动的非 Lipschitz 系数随机微分方程的后向欧拉方法
  • DOI:
    10.1007/s10543-023-00981-z
  • 发表时间:
    2022-05-26
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Hao Zhou;Yaozhong Hu;Yanghui Liu
  • 通讯作者:
    Yanghui Liu
Asymptotics of the density of parabolic Anderson random fields
抛物线安德森随机场密度的渐近

Yaozhong Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaozhong Hu', 18)}}的其他基金

Nonlinear Functionals of Fractional Brownian Motion
分数布朗运动的非线性泛函
  • 批准号:
    0504783
  • 财政年份:
    2005
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Standard Grant

相似国自然基金

随机偏微分方程耦合系统有限时间的同步能控性
  • 批准号:
    12301577
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性随机系统合作微分博弈的鲁棒Pareto策略研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
正倒向随机微分大种群系统的社会最优问题及其应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
随机微分系统的几何理论与拟遍历性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
稳定 Lévy 过程驱动系统的 Fokker-Planck 方程及应用
  • 批准号:
    11901159
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 9.33万
  • 项目类别:
Development, evolution, and new development of stochastic analysis of infinite particle systems
无限粒子系统随机分析的发展、演变和新发展
  • 批准号:
    21H04432
  • 财政年份:
    2021
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
  • 批准号:
    545729-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Postdoctoral Fellowships
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
  • 批准号:
    545729-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Postdoctoral Fellowships
Global Non-Gaussian Stochastic Partial Differential Equation Models for Assessing Future Health of Ecohydrologic Systems
用于评估生态水文系统未来健康状况的全局非高斯随机偏微分方程模型
  • 批准号:
    2014166
  • 财政年份:
    2020
  • 资助金额:
    $ 9.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了