Quantization on Cotangent Bundles

余切丛的量化

基本信息

  • 批准号:
    0200649
  • 负责人:
  • 金额:
    $ 10.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

PI: Brian C. Hall, University of Notre DameDMS-0200649Abstract:The PI's research concerns the quantization of certainspecial classical systems, those whose classical configurationspace is a compact symmetric space, such as a sphere. Thesimplest physical example of such a system is (the rotationaldegrees of freedom of) a rigid body, whose configuration space isthe rotation group SO(3). The phase space of any such system,namely, the cotangent bundle of the compact symmetric space, hasa natural complex structure that makes the phase space into aKahler manifold. Thus the quantization of such a system can bedone in two ways, one using the usual position Hilbert space andthe other using a Hilbert space of holomorphic functions. Thelatter space generalizes the classical Segal-Bargmann space. Thetwo possible quantum Hilbert spaces are related by a unitarytransform, the generalized Segal-Bargmann transform, developed bythe PI and M. Stenzel. The unitarity of this transform can bere-formulated as a resolution of the identity for the associated"coherent states," as shown in detail by the PI and J. Mitchell.These results have been applied to the quantization oftwo-dimensional Yang-Mills theory and to the classical limit ofThiemann's quantum gravity theory. The PI is continuing toinvestigate several aspects of the theory, including thesemiclassical localization properties of the coherent states,properties of the associated quantization schemes (generalizedWick, anti-Wick, and Weyl quantizations), and the relationship ofthe theory to geometric quantization. Broadly speaking the PI's research is in the boundaryregion between classical and quantum mechanics. Quantum mechanicsis the theory that governs the world at the atomic scale.Although classical (Newtonian) mechanics works well formacroscopic phenomena, it cannot account for the structure ofatoms and molecules--at this level the quantum theory takes over.For the two theories to be consistent with one another thepredictions of quantum mechanics must pass smoothly into those ofclassical mechanics as the scale passes from microscopic tomacroscopic. On the other hand, the mathematical structure of thetwo theories is very different, so it is challenging tounderstand how this quantum-to-classical transition takes place.The PI's research concerns a reformulation of quantum mechanicswhich is equivalent to the usual one but which brings thedescription of quantum mechanics closer to that of classicalmechanics. Specifically, the PI's work takes one standardreformulation of quantum mechanics, the Segal-Bargmann transform,and extends it to apply to systems with more complicated degreesof freedom, such as rotations. This work has been applied in asimplified model of the strong interaction in particle physicsand in an ambitious program of T. Thiemann and collaborators todevelop a quantum theory of gravity.
PI:Brian C. Hall,Notre Damedms-0200649Abstract:PI的研究涉及某些特殊经典系统的量化,这些系统的经典配置空间是一个紧凑的对称空间,例如球体。这种系统的theimphest物理示例是(旋转自由的)刚体,其配置空间是旋转组SO(3)。任何此类系统的相空间,即紧凑型对称空间的cotangent束,Hasa天然复杂结构,使相位空间成为Akahler歧管。因此,这样的系统的量化可以通过两种方式进行,一种使用通常的位置希尔伯特空间,另一个使用Holmormormormorthic函数的希尔伯特空间。 Thelatter Space概括了经典的Segal-Bargmann空间。这可能是由Pi和M. Stenzel开发的一般性Segal-Bargmann变换的单位变换,可能的量子Hilbert空间与量子。如PI和J. Mitchell所示,这种转换的单位性可以作为对相关“相干状态”的身份的分辨率进行构型的。以及Thiemann量子重力理论的经典极限。 PI正在继续研究该理论的几个方面,包括相干状态的血统定位特性,相关的量化方案的特性(GeneralizedWick,Anti-Wick和Weyl量化)以及理论与几何量化的关系。从广义上讲,PI的研究是经典和量子力学之间的边界区域。量子力学是在原子量表上统治世界的理论。尽管古典(牛顿)力学运作良好,因此无法解释量子和分子的结构 - 在此级别上,量子理论接管了这两个理论。与量子力学的预测相同,随着量表从微观上刻板镜传递,量子力学的预测必须平稳地传递到阶级。另一方面,这种理论的数学结构是非常不同的,因此它挑战了Tounderstand,这种量子到古典过渡是如何进行的。量子力学更接近古典机械。具体而言,PI的工作采用了量子力学,Segal-Bargmann变换的标准改革,并将其扩展到适用于自由度更复杂的系统,例如旋转。这项工作已被应用于T. Thiemann的雄心勃勃的颗粒物理学和粒子物理中强相互作用的模型,并合作者对重力的量子理论进行了开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Hall其他文献

Ohio Coronavirus Wastewater Monitoring Network: Implementation of Statewide Monitoring for Protecting Public Health
俄亥俄州冠状病毒废水监测网络:实施全州监测以保护公众健康
  • DOI:
    10.1097/phh.0000000000001783
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    PhD Mph Zuzana Bohrerova;PhD Nichole E. Brinkman;PhD Ritu Chakravarti;PhD Saurabh Chattopadhyay;PhD Seth A. Faith;PhD Jay Garland;MSc James Herrin;PhD Natalie Hull;PhD Michael Jahne;PhD Dae;PhD Scott P. Keely;PhD Jiyoung Lee;PhD Stan Lemeshow;PhD John Lenhart;MS Eva Lytmer;PhD Mph Devesh Malgave;Mph Lin Miao;MS Angela Minard;PhD Xiaozhen Mou;PhD Maitreyi Nagarkar;PhD Anda Quintero;MS Francesca D. R. Savona;PhD John Senko;PhD Joan L. Slonczewski;PhD Rachel R. Spurbeck;PhD Michael G. Sovic;PhD R. Travis Taylor;PhD Linda K. Weavers;PE Mark Weir;R. Fugitt;Gene Phillips;Jill Garratt;Sarah Lauterbach;Rachel Baker;Brian Hall;Tiffani Kavalec;Ohio Epa;Amy Kirby
  • 通讯作者:
    Amy Kirby
GA-Based Optimization of Steel Moment Frames: A Case Study
基于遗传算法的钢弯矩框架优化:案例研究
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Hall
  • 通讯作者:
    Brian Hall
Cognitive Biases: Mistakes or Missing Stakes?
认知偏差:错误还是缺失?
  • DOI:
    10.1596/1813-9450-8168
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Enke;U. Gneezy;Brian Hall;David Martin;V. Nelidov;T. J. S. Offerman;Jeroen van de Ven
  • 通讯作者:
    Jeroen van de Ven
Benchmarking Private Cloud Performance with User-Centric Metrics
使用以用户为中心的指标对私有云性能进行基准测试
Tools for Authoring a Dialogue Agent that Participates in Learning Studies
用于创作参与学习研究的对话代理的工具

Brian Hall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Hall', 18)}}的其他基金

Collaborative Research: EPIIC: Developing Emerging Technology Ecosystem Partnerships for Primarily Undergraduate Institutions
合作研究:EPIIC:为主要本科机构发展新兴技术生态系统合作伙伴关系
  • 批准号:
    2331431
  • 财政年份:
    2023
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Holomorphic function spaces and quantization
全纯函数空间和量化
  • 批准号:
    1301534
  • 财政年份:
    2013
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Continuing Grant
Quantization, complex structures, and spaces of holomorphic functions
量子化、复数结构和全纯函数空间
  • 批准号:
    1001328
  • 财政年份:
    2010
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Continuing Grant
Quantization, Symmetric Spaces, and Symplectic Reduction
量化、对称空间和辛约简
  • 批准号:
    0555862
  • 财政年份:
    2006
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9705930
  • 财政年份:
    1997
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Fellowship Award

相似国自然基金

余切丛的特殊拉格朗日子流形及相关问题
  • 批准号:
    11271213
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

モチヴィックホモトピー論における相対的手法の導入
动机同伦理论中相对方法的介绍
  • 批准号:
    19J21433
  • 财政年份:
    2019
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Gevrey strong hyperbolicity and the structure of Hamilton map and flow
Gevrey强双曲性与Hamilton图和流的结构
  • 批准号:
    26400167
  • 财政年份:
    2014
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation-theoretic invariants and moment map
表示理论不变量和矩图
  • 批准号:
    23540203
  • 财政年份:
    2011
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Technological development of crushing mass minute creature to micro size pieces by high speed rotating fluid motion and its water treatment system using micro-nano-technology
利用高速旋转流体运动将大量微小生物破碎成微米级碎片的技术及其微纳技术水处理系统开发
  • 批准号:
    16206051
  • 财政年份:
    2004
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
代数スタッフの変形理論
代数职员变换理论
  • 批准号:
    03J05480
  • 财政年份:
    2003
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了