Quantization, complex structures, and spaces of holomorphic functions
量子化、复数结构和全纯函数空间
基本信息
- 批准号:1001328
- 负责人:
- 金额:$ 13.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project continues the PI's work related to complex structures and theholomorphic approach to quantization, with the emphasis shifting toward spacesof holomorphic functions on infinite-dimensional groups. The PI, in work with W. Kirwin, has developed a new method of understanding certain so-called adapted complex structures on a Riemannian manifold, using the imaginary-time geodesic flow and expects to construct a new class of complex structures by introducing a magnetic term into the geodesic flow. Another part of this project includes a return to an earlier part of the PI's research, namely the study of holomorphic function spaces over infinite-dimensional groups. The current goal is to develop a better understanding of various basic constructs in the subject where even finding the proper definitions is extremely difficult. The techniques the PI is developing are expected to contribute to quantum physics, especially to the fundamental subject of quantum field theory. Field theories are systems with infinitely many degrees of freedom, and quantization of such theories is notoriously difficult. The holomorphic approach to quantization has proved fruitful already in the finite-dimensional setting, and it has certain advantages with respect to the infinite-dimensional limit. In particular, infinite-dimensional groups show up often in quantum field theory, so the PIs work on such groups is not far from applications.The PI's work in quantum theory has led him to start writing a book on quantum mechanics. The goal of this book is to make quantum mechanics accessibleto an audience of mathematicians. This book will fill in the necessary background from classical mechanics and then explain quantum mechanics using notation that is familiar to mathematicians, and showing respect for the significant technical mathematical issues that are glossed over in the physics literature. The goal, however, is not to emphasize the mathematical technicalities, but rather to explain the main ideas of quantum theory in language that mathematicians feel comfortable with. The PI hopes that this book will contribute to the long and mutually beneficial interaction between quantum physics and mathematics. The PI will continue to write additional expository articles as well as research articles and will teach a graduate course using the materials being developed for the book.
该项目延续了 PI 与复杂结构和全纯量化方法相关的工作,重点转向无限维群上的全纯函数空间。 PI 与 W. Kirwin 合作,开发了一种新方法来理解黎曼流形上的某些所谓的适应复杂结构,使用虚时间测地线流,并期望通过引入磁力来构造一类新的复杂结构。项进入测地线流。该项目的另一部分包括回归 PI 早期研究部分,即无限维群上的全纯函数空间的研究。 当前的目标是更好地理解该主题中的各种基本结构,即使找到正确的定义也是极其困难的。 PI 正在开发的技术预计将为量子物理学做出贡献,尤其是量子场论的基础学科。场论是具有无限多个自由度的系统,并且此类理论的量化非常困难。 事实证明,全纯量化方法在有限维设置中已经取得了丰硕的成果,并且相对于无限维限制具有一定的优势。特别是无限维群经常出现在量子场论中,因此 PI 在此类群上的工作离应用并不遥远。PI 在量子理论方面的工作促使他开始写一本关于量子力学的书。本书的目标是让数学家读者能够理解量子力学。本书将填补经典力学的必要背景,然后使用数学家熟悉的符号解释量子力学,并尊重物理文献中掩盖的重要技术数学问题。然而,我们的目标不是强调数学技术细节,而是用数学家熟悉的语言解释量子理论的主要思想。 PI 希望这本书能够为量子物理和数学之间的长期互利互动做出贡献。 PI 将继续撰写更多的说明性文章和研究文章,并将使用为本书开发的材料教授研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Hall其他文献
Ohio Coronavirus Wastewater Monitoring Network: Implementation of Statewide Monitoring for Protecting Public Health
俄亥俄州冠状病毒废水监测网络:实施全州监测以保护公众健康
- DOI:
10.1097/phh.0000000000001783 - 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
PhD Mph Zuzana Bohrerova;PhD Nichole E. Brinkman;PhD Ritu Chakravarti;PhD Saurabh Chattopadhyay;PhD Seth A. Faith;PhD Jay Garland;MSc James Herrin;PhD Natalie Hull;PhD Michael Jahne;PhD Dae;PhD Scott P. Keely;PhD Jiyoung Lee;PhD Stan Lemeshow;PhD John Lenhart;MS Eva Lytmer;PhD Mph Devesh Malgave;Mph Lin Miao;MS Angela Minard;PhD Xiaozhen Mou;PhD Maitreyi Nagarkar;PhD Anda Quintero;MS Francesca D. R. Savona;PhD John Senko;PhD Joan L. Slonczewski;PhD Rachel R. Spurbeck;PhD Michael G. Sovic;PhD R. Travis Taylor;PhD Linda K. Weavers;PE Mark Weir;R. Fugitt;Gene Phillips;Jill Garratt;Sarah Lauterbach;Rachel Baker;Brian Hall;Tiffani Kavalec;Ohio Epa;Amy Kirby - 通讯作者:
Amy Kirby
GA-Based Optimization of Steel Moment Frames: A Case Study
基于遗传算法的钢弯矩框架优化:案例研究
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Brian Hall - 通讯作者:
Brian Hall
Cognitive Biases: Mistakes or Missing Stakes?
认知偏差:错误还是缺失?
- DOI:
10.1596/1813-9450-8168 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Benjamin Enke;U. Gneezy;Brian Hall;David Martin;V. Nelidov;T. J. S. Offerman;Jeroen van de Ven - 通讯作者:
Jeroen van de Ven
Benchmarking Private Cloud Performance with User-Centric Metrics
使用以用户为中心的指标对私有云性能进行基准测试
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Bin Sun;Brian Hall;Hu Wang;Da Wei Zhang;Kai Ding - 通讯作者:
Kai Ding
Tools for Authoring a Dialogue Agent that Participates in Learning Studies
用于创作参与学习研究的对话代理的工具
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Pamela W. Jordan;Brian Hall;M. Ringenberg;Yui Cue;C. Rosé - 通讯作者:
C. Rosé
Brian Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Hall', 18)}}的其他基金
Collaborative Research: EPIIC: Developing Emerging Technology Ecosystem Partnerships for Primarily Undergraduate Institutions
合作研究:EPIIC:为主要本科机构发展新兴技术生态系统合作伙伴关系
- 批准号:
2331431 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Standard Grant
Holomorphic function spaces and quantization
全纯函数空间和量化
- 批准号:
1301534 - 财政年份:2013
- 资助金额:
$ 13.74万 - 项目类别:
Continuing Grant
Quantization, Symmetric Spaces, and Symplectic Reduction
量化、对称空间和辛约简
- 批准号:
0555862 - 财政年份:2006
- 资助金额:
$ 13.74万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705930 - 财政年份:1997
- 资助金额:
$ 13.74万 - 项目类别:
Fellowship Award
相似国自然基金
高阶导数引力理论标量化黑洞的全息复杂度与内部结构的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂动载环境下航天薄壁结构轻量化的正向设计方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
飞机铆接结构复杂隐藏缺陷的平面远场涡流检测方法研究
- 批准号:51865033
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
复杂机械结构不确定力学行为与可靠性分析的新型非概率凸集方法
- 批准号:11662004
- 批准年份:2016
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
人类语音复杂系统的量化及理论研究
- 批准号:11505071
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergent synthesis of dimeric alkaloids possessing highly complex structures based on the development of catalysts for aerobic oxidation
基于有氧氧化催化剂的开发,聚合合成具有高度复杂结构的二聚生物碱
- 批准号:
20K06936 - 财政年份:2020
- 资助金额:
$ 13.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational approach to investigating effects of molecular structures in dye-sensitized solar cells on open-circuit photovoltage to design the structures such as ligand of sensitizer complex
研究染料敏化太阳能电池分子结构对开路光电压影响的计算方法,以设计敏化剂配合物的配体等结构
- 批准号:
16K05889 - 财政年份:2016
- 资助金额:
$ 13.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
- 批准号:
16K13755 - 财政年份:2016
- 资助金额:
$ 13.74万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Integrated research of Calabi-Yau structures and generalized complex structures
Calabi-Yau结构与广义复杂结构的综合研究
- 批准号:
25287011 - 财政年份:2013
- 资助金额:
$ 13.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spectroscopic study of novel cluster structures created as chemical intermediates in supersonic molecular beams
超音速分子束中作为化学中间体产生的新型簇结构的光谱研究
- 批准号:
20550005 - 财政年份:2009
- 资助金额:
$ 13.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)