Efficient Algorithms for Lossless Data and Image Compression
无损数据和图像压缩的高效算法
基本信息
- 批准号:0122293
- 负责人:
- 金额:$ 8.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal 122293U of Ill Urbana-ChampaignPI: Bresler, YoramIn spite of the focus in recent years on lossy compression of audio, images, and video, lossless data compression remains crucial in applications such as text files, facsimiles, software executables, andmedical imaging. Universal source coding algorithms, which deal with sources whose statistics are unknown, are of particular importance. Universal coding methods are designed for universal performance over a broad class of possible sources. In these methods the source parameters are estimated, either implicitly or explicitly, and the sequence itself is encoded accordingly. Therefore the coding length for universal methods is g eater than the entropy; the extra coding length, called the redundancy satisfies a fundamental lower bound by Rissanen. The focus of research in universal data compression has been on reducing redundancies. In this sense, context tree weighting (CTW) has achieved the ultimate goal for the important class of tree sources, because ithas essentially achieved Rissanen 's bound. However, in addition to low redundancies, a universal coding method must be computationally fast, and consume little memory. Neither of the two leading methods, CTW orPPM, a compression method that has been fine-tuned by various heuristics for practical use, are particularly strong performers in these respects. Therefore, the main goal of the proposed research is to develop algorithms featuring fast computation and low memory use, while providing compression near Rissanen 's bound. Like some of the most efficient high-performance universal compression algorithms to-date, the proposed approach is based on the Burrows Wheeler transform (BWT). The BWT is an invertible transform whose output contains segments in which symbols are approximately independent identically distributed. Owing to this similarity to piecewise i.i.d. (PIID), compressing the BWT output using PIID methods yields goodcompression results. However, such methods cannot achieve universal coding redundancies close to Rissanen 's bound because they require (whether implicitly or Explicitly) extra bits to encode the positions oftransitions between segments in the BWT output. Recognizing this hidden overhead, this project proposes to take a fresh look at BWT based-methods and the relationship to the fundamental redundancy bounds.The project will explore ways to close the gap between traditional BWT-based methods and Rissanen 's bound while retaining the computational efficiency of the BWT. A particular challenge will be to apply this approach to lossless image compression. The resulting algorithms will have linear complexity, and be better than any current algorithm with comparable asymptotic compression performance, in terms of computation and/or memory use. Some versions of these algorithms will also have simple structure, admitting fast hardware implementations. Furthermore, this research will reveal the role of context modeling in universal lossless image compression. Since near-Rissanen redundancies with linear complexity are hard to beat, we expect a shift in the universal coding literature from compression improvement to implementation and practicality.
伊利诺伊州厄巴纳-香槟分校的 122293U 提案 PI:Bresler、Yoram 尽管近年来人们关注音频、图像和视频的有损压缩,但无损数据压缩在文本文件、传真、软件可执行文件和医学成像等应用中仍然至关重要。通用源编码算法尤其重要,它处理统计数据未知的源。 通用编码方法专为在广泛的可能来源上实现通用性能而设计。在这些方法中,隐式或显式地估计源参数,并且序列本身被相应地编码。因此,通用方法的编码长度大于熵;额外的编码长度(称为冗余)满足 Rissanen 的基本下限。通用数据压缩的研究重点是减少冗余。从这个意义上说,上下文树权重(CTW)已经达到了重要类树源的最终目标,因为它本质上达到了 Rissanen 的界限。然而,除了低冗余之外,通用编码方法还必须计算速度快,并且消耗很少的内存。 CTW 或 PPM(一种经过各种启发式微调以供实际使用的压缩方法)这两种主要方法在这些方面都不是特别强的表现。 因此,本研究的主要目标是开发具有快速计算和低内存使用的算法,同时提供接近 Rissanen 界限的压缩。与迄今为止一些最有效的高性能通用压缩算法一样,所提出的方法基于 Burrows Wheeler 变换 (BWT)。 BWT 是一种可逆变换,其输出包含符号近似独立同分布的分段。由于与分段独立同分布的相似性。 (PIID),使用 PIID 方法压缩 BWT 输出会产生良好的压缩结果。然而,此类方法无法实现接近 Rissanen 界限的通用编码冗余,因为它们需要(无论是隐式还是显式)额外的位来对 BWT 输出中段之间的转换位置进行编码。 认识到这种隐藏的开销,该项目建议重新审视基于 BWT 的方法以及与基本冗余界限的关系。该项目将探索缩小传统基于 BWT 的方法与 Rissanen 界限之间差距的方法,同时保留BWT 的计算效率。一个特殊的挑战是将这种方法应用于无损图像压缩。由此产生的算法将具有线性复杂度,并且在计算和/或内存使用方面优于具有可比渐近压缩性能的任何当前算法。这些算法的某些版本也将具有简单的结构,允许快速的硬件实现。此外,这项研究将揭示上下文建模在通用无损图像压缩中的作用。由于线性复杂度的近 Rissanen 冗余很难被击败,因此我们预计通用编码文献会从压缩改进转向实现和实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoram Bresler其他文献
Yoram Bresler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoram Bresler', 18)}}的其他基金
BIGDATA: F: DKA: CSD: DKM: Theory and Algorithms for Processing Data with Sparse and Multilinear Structure
BIGDATA:F:DKA:CSD:DKM:稀疏和多线性结构数据处理的理论和算法
- 批准号:
1447879 - 财政年份:2014
- 资助金额:
$ 8.29万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Scalable Learning of Sparse Representations
CIF:小:稀疏表示的可扩展学习的理论和算法
- 批准号:
1320953 - 财政年份:2013
- 资助金额:
$ 8.29万 - 项目类别:
Standard Grant
CIF: Small: Dictionary Learning for Compressed Sensing
CIF:小:压缩感知的字典学习
- 批准号:
1018660 - 财政年份:2010
- 资助金额:
$ 8.29万 - 项目类别:
Standard Grant
CIF: Small: Blind Perfect Signal Reconstruction in Subsampled Multi-Channel Systems
CIF:小:子采样多通道系统中的盲完美信号重建
- 批准号:
1018789 - 财政年份:2010
- 资助金额:
$ 8.29万 - 项目类别:
Standard Grant
Fast Algorithms for 3D Cone-Beam Tomography
3D 锥形束层析成像的快速算法
- 批准号:
0209203 - 财政年份:2002
- 资助金额:
$ 8.29万 - 项目类别:
Continuing Grant
Minimum Redundancy Spatiotemporal MRI
最小冗余时空 MRI
- 批准号:
0201876 - 财政年份:2002
- 资助金额:
$ 8.29万 - 项目类别:
Standard Grant
Performance Bounds on Image and Video Compression
图像和视频压缩的性能限制
- 批准号:
9707633 - 财政年份:1997
- 资助金额:
$ 8.29万 - 项目类别:
Continuing Grant
PYI: Statistical Techniques in Inverse Problems
PYI:反问题中的统计技术
- 批准号:
9157377 - 财政年份:1991
- 资助金额:
$ 8.29万 - 项目类别:
Continuing Grant
相似国自然基金
数据中心网络无损或微损传输层理论与算法
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
微波无损检测中的电磁逆散射问题和高效无网格成像算法研究
- 批准号:
- 批准年份:2019
- 资助金额:62 万元
- 项目类别:
基于深度映射的慢阻肺电阻抗成像早期诊断方法研究
- 批准号:61903273
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
各向异性材料电磁特性空间分布重构方法研究
- 批准号:61801267
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
定量评价弥散张量成像预处理联合双张量无损卡尔曼滤波算法优化锥体束显像用于胶质瘤手术导航的可靠性研究
- 批准号:81701796
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elements: Advanced Lossless and Lossy Compression Algorithms for netCDF Datasets in Earth and Engineering Sciences (CANDEE)
元素:地球与工程科学中 netCDF 数据集的高级无损和有损压缩算法 (CANDEE)
- 批准号:
2004993 - 财政年份:2020
- 资助金额:
$ 8.29万 - 项目类别:
Standard Grant
文字列圧縮と組合せ論による大規模データ管理・処理技法の開発
使用字符串压缩和组合学开发大规模数据管理和处理技术
- 批准号:
18F18120 - 财政年份:2018
- 资助金额:
$ 8.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New Trends in Transform-based Lossless Compression Algorithms
基于变换的无损压缩算法的新趋势
- 批准号:
17K00004 - 财政年份:2017
- 资助金额:
$ 8.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on lossless and near-lossless coding of still images and information embedding
静止图像无损和近无损编码及信息嵌入研究
- 批准号:
19560405 - 财政年份:2007
- 资助金额:
$ 8.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lossless Watermarking for Data Security and Integrity of Medical Images
无损水印确保医学图像的数据安全性和完整性
- 批准号:
7480204 - 财政年份:2004
- 资助金额:
$ 8.29万 - 项目类别: