Ultrasensitive Calorimetry Enabled by Suspended Semiconductor Nanostructures

悬浮半导体纳米结构实现超灵敏量热法

基本信息

  • 批准号:
    0102886
  • 负责人:
  • 金额:
    $ 33.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-05-15 至 2004-04-30
  • 项目状态:
    已结题

项目摘要

In mesoscopic systems at low temperatures, heat transport and thermal equilibration occur in a very different manner from macroscopic systems at room temperature. This is due to the small heat capacities involved, and very long thermal relaxation times to reach equilibrium with a heat reservoir, the environment. At the ultimate limit, thermal transport involves exchange of a single energy channel between a system and the environment. During the preceding phase of this project, investigators observed, for the first time, this predicted quantization of thermal conductance. This places an important, hard upper bound on the thermal conductance available through future molecular electronic devices. The current project continues the investigation of heat capacities of nanomachined mesoscopic systems: Suspended semiconductor nanostructures that are thermally-isolated and have integral transducers that permit the localized introduction of heat and local temperature measurements. Heat capacity measurements on minute samples with unprecedented sensitivity should be possible. This should provide data relevant to the engineering of miniaturized thermal detectors, and will provide crucial information relating to limits of power dissipation in molecular-scale and ultrasmall electronic devices. With this level of sensitivity, calorimetry experiments that elucidate processes involving individual atoms and molecules should also become possible for the first time. The effort will introduce undergraduates, graduate students, and postdoctoral researchers to advanced techniques in nanofabrication and in techniques and principles of ultrasensitive measurements.%%%Future electronics will likely be based upon molecular scale devices. Active electronic devices, at any scale, require power to operate and this must ultimately be dissipated to their surroundings. However at the molecular scale the processes that govern power dissipation become very weak; hence it can be problematic. This domain had remained largely unexplored until 1999, when, in a previous NSF-funded research program, investigators observed the quantization of thermal conductance -- a fundamental limit to the rate at which power can be conducted from a small system to its surroundings. In their current proposal, the authors propose to continue with research in this realm, turning now to the heat capacity of very small systems, i.e. their ability to "store" energy. Their approach involves suspended semiconductor nanostructures, fabricated by new surface nanomachining processes they have developed. These enable the construction of complex exploratory devices at the nanometer-scale, with internal components allowing quantitative and precise measurements on their properties to be carried out. In the proposed research program these will be utilized to obtain a more complete understanding of heat transport and the heat capacity of nanometer-scale structures. They should also prove to be extremely useful for the engineering of miniaturized thermal detectors, and will provide crucial information relating to limits of power dissipation in molecular-scale and ultrasmall electronic devices. With this level of sensitivity, experiments that elucidate processes involving heat flow between individual atoms and molecules should also become possible for the first time. The effort will introduce undergraduates, graduate students, and postdoctoral researchers to advanced techniques in nanofabrication and in techniques and principles of ultrasensitive measurements.
在低温下的介观系统中,热传输和热平衡的发生方式与室温下的宏观系统非常不同。 这是由于所涉及的热容较小,并且与热库(环境)达到平衡的热弛豫时间非常长。 在最终极限下,热传输涉及系统与环境之间的单一能量通道的交换。 在该项目的前一阶段,研究人员首次观察到这种预测的热导量子化。 这为未来分子电子器件的热导率设定了一个重要的、硬性的上限。 当前的项目继续研究纳米机械介观系统的热容量:悬浮的半导体纳米结构是热隔离的,并具有集成传感器,允许局部引入热量和局部温度测量。 以前所未有的灵敏度对微小样品进行热容测量应该是可能的。这应该提供与小型热探测器工程相关的数据,并将提供与分子级和超小型电子设备功耗限制相关的关键信息。 有了这种水平的灵敏度,阐明涉及单个原子和分子的过程的量热实验也应该首次成为可能。 这项工作将向本科生、研究生和博士后研究人员介绍纳米制造以及超灵敏测量技术和原理的先进技术。%%%未来的电子产品可能会基于分子级设备。 任何规模的有源电子设备都需要电力才能运行,而这些电力最终必须耗散到周围环境中。 然而,在分子尺度上,控制功率耗散的过程变得非常弱。因此这可能是有问题的。 直到 1999 年,这一领域在很大程度上仍未得到探索,当时,在之前由 NSF 资助的一项研究计划中,研究人员观察到了热导的量化——这是功率从小系统传导到周围环境的速率的基本限制。 在他们当前的提案中,作者建议继续在这一领域进行研究,现在转向非常小的系统的热容量,即它们“存储”能量的能力。他们的方法涉及悬浮的半导体纳米结构,通过他们开发的新表面纳米加工工艺制造。 这些使得能够构建纳米级的复杂探索装置,其内部组件可以对其特性进行定量和精确的测量。 在拟议的研究计划中,这些将用于更全面地了解纳米级结构的热传输和热容量。 它们还应该被证明对于小型热探测器的工程极其有用,并将提供与分子级和超小型电子设备的功耗限制相关的关键信息。 有了这种水平的灵敏度,阐明涉及单个原子和分子之间热流的过程的实验也应该首次成为可能。 这项工作将向本科生、研究生和博士后研究人员介绍纳米制造以及超灵敏测量技术和原理的先进技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Roukes其他文献

A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph
  • DOI:
    10.1039/c9lc00027e
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Joshua J. Whiting;Edward Myers;Ronald P. Manginell;Mathew W. Moorman;John Anderson;Cory S. Fix;Cody Washburn;Al Staton;Daniel Porter;Darin Graf;David R. Wheeler;Stephen Howell;John Richards;Haley Monteith;Komandoor E. Achyuthan;Michael Roukes;Robert J. Simonson
  • 通讯作者:
    Robert J. Simonson

Michael Roukes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Roukes', 18)}}的其他基金

PFI-TT: A highly multiplexed readout system for single-molecule analysis
PFI-TT:用于单分子分析的高度多重读出系统
  • 批准号:
    2016555
  • 财政年份:
    2020
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
PFI-TT: A highly multiplexed readout system for single-molecule analysis
PFI-TT:用于单分子分析的高度多重读出系统
  • 批准号:
    2016555
  • 财政年份:
    2020
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
2nd International Workshop on the Frontiers of Nanomechanical Systems (FNS/2019)
第二届纳米机械系统前沿国际研讨会(FNS/2019)
  • 批准号:
    1916003
  • 财政年份:
    2019
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
MRI: Development of a Highly-Multiplexed Cavity Optomechanical System for Single-Molecule Mass Spectrometry and Inertial Imaging
MRI:开发用于单分子质谱和惯性成像的高度复用腔光机械系统
  • 批准号:
    1828787
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Biophotonic neural probes for studying the brain's immune response
用于研究大脑免疫反应的生物光子神经探针
  • 批准号:
    1403817
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Highly Multiplexed Optogenetic Neural Stimulation using integrated optical technologies
使用集成光学技术的高度复用光遗传学神经刺激
  • 批准号:
    1265055
  • 财政年份:
    2013
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
PoLS: Direct Calorimetric Measurements of Metabolism and Thermogenesis of C. Elegans and Other Model Organisms
PoLS:线虫和其他模型生物代谢和产热的直接量热测量
  • 批准号:
    1206106
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Investigation of Cellular Compliance Sensing and Response Using Single-Cell-Pico-Force-Microscopy
使用单细胞皮力显微镜研究细胞顺应性传感和响应
  • 批准号:
    0900833
  • 财政年份:
    2009
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
MRI: Development of Single-Molecule NEMS Mass Spectrometry
MRI:单分子 NEMS 质谱分析的发展
  • 批准号:
    0821863
  • 财政年份:
    2008
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
First International Conference and School on Nanoscale/Molecular Mechanics
第一届纳米/分子力学国际会议和学院
  • 批准号:
    0226001
  • 财政年份:
    2002
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant

相似国自然基金

量热法研究金属有机骨架基CO2吸附剂再生能量性质
  • 批准号:
    22303103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量热法研究二维材料基复合相变材料热力学性质
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
巨单层磷脂囊泡冷冻干燥关键热物理问题研究
  • 批准号:
    51876053
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
量热法研究配体改性对FeCo双金属氰化物结构及其催化苯乙烯环氧化反应的影响
  • 批准号:
    21773097
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
离子膜烧碱生产中高盐卤水体系微量碘净化的热力学与热动力学研究
  • 批准号:
    21773170
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
Thermogravimetric Analysis Combined with Calorimetry and Gas-Chromatography/Mass Spectrometry
热重分析与量热法和气相色谱/质谱联用
  • 批准号:
    530331787
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Major Research Instrumentation
Animal Models and Histology Core
动物模型和组织学核心
  • 批准号:
    10715404
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
Multifunctional Roles of AgI/II Family Proteins
AgI/II 家族蛋白的多功能作用
  • 批准号:
    10750344
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
Physiologic response to bariatric surgery and the impact of adjunct semaglutide - in adolescents (the PRESSURE trial)
青少年对减肥手术的生理反应和辅助索马鲁肽的影响(PRESSURE 试验)
  • 批准号:
    10590377
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了