CAS-MNP: Real time analysis of impact of nanoplastics on marine species using AI integrated microfluidics
CAS-MNP:利用人工智能集成微流体技术实时分析纳米塑料对海洋物种的影响
基本信息
- 批准号:2038484
- 负责人:
- 金额:$ 39.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The impact of micro (5mm) and nano (100nm) plastic accumulation on marine ecosystems must be quantified to inform sustainable practices ranging from manufacturing and waste processing protocols to the development of nutritional guidelines for marine species consumption. This project will advance the fundamental understanding of the impacts of nanoplastic exposure on the early stage (embryonic and larval) development of marine fish; as these phases are most susceptible, any abnormalities could have far-reaching ramifications for the sustainable future. The present study focuses on mahi-mahi (Coryphaenae hippurus), a commercially and nutritionally important fish species found around the world. Microfluidic technology will be used to closely regulate the simulated marine environment and nanoplastic exposure, while artificial intelligence will be implemented to correlate real time visualization of nanoplastic consumption and fish morphology with environmental conditions – yielding essential data on the factors affecting nanoplastic consumption (e.g., size, concentration, stage of exposure) and the resultant effects on growth and development (e.g., cellular and genetic changes, abnormal organ development, growth retardation, changed feeding patterns). Data dissemination and educational outreach to broad, non-specialized audiences will be conducted at multiple educational levels –including the development of a series of age-appropriate modules titled “Fishing plastics” for Florida International University’s “Engineers on Wheels” program, where students and faculty give hands on demonstrations to students at multiple educational levels. In “Fishing plastic” students will explore pathways through which plastics accumulate in the ocean, the impact on the ecosystem and strategies to minimize transmission. The interdisciplinary nature of the project also offers aquaculture students at the University of Rhode Island and engineers at Florida International University the opportunity to learn one another’s languages and integrate academic research with technology through funding for undergraduate students, undergraduate Capstone projects and a graduate fellowship.Examining environmental impact at the nanoscale is a new paradigm for end-end research into climate-change and pollution where the predominant focus is on macroscale manifestations. This study applies a mechanistic approach to rigorously measure - in situ and in real time – the bioaccumulation of nano plastics as a function of environment (size, concentration) and uptake mechanism (active vs passive) and the resultant developmental changes in fish from the embryonic through larval stages. This approach will inform our fundamental understanding of the relationship between these factors and the role of nano plastics beyond the black and white terms of toxicity and morphology to provide insight into the cellular processes that cause these outcomes. Sensors embedded in microfluidic chambers containing a singly embryo/larvae generate real-time electrochemical data to be correlated with continuous visual measurements of the transparent/semi-transparent fish. Environmental impact will be rigorously categorized using machine learning to establish a relationship between applied conditions (nanoplastic composition/concentration), developmental stage, uptake mechanism (passive respiration/drinking versus active feeding) and visual measurement of bioaccumulation and morphology which will be correlated with continuous measurement of metabolic indicators Oxygen (O2) and total ammonia nitrogen (TAN:NH3/NH4). The implementation of artificial intelligence to correlate multiple data types obtained in real time and in situ is a unique approach which enables a more comprehensive understanding of the environmental impact as well as paving the way for future comparative studies. Data dissemination and educational outreach to broad, non-specialized audiences will be conducted at multiple educational levels –including the development of a series of age-appropriate modules on the environmental impact of plastics for Florida International University’s “Engineers on Wheels” program. The interdisciplinary nature of the project also offers aquaculture students at the University of Rhode Island and engineers at Florida International University the opportunity to collaborate through funding for undergraduate students, Capstone projects focusing on microfluidic system design and sensor integration and a graduate fellowship.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
必须量化微型(5mm)和纳米(100nm)塑料积累对海洋生态系统的影响,以告知可持续实践,从制造和废物加工方案到针对海洋物种消耗的营养准则的制定。该项目将进一步了解纳米塑性暴露对海洋鱼类早期(胚胎和幼虫)发育的影响;由于这些阶段最容易受到影响,因此任何异常都可能在可持续的未来中产生深远的影响。本研究的重点是Mahi-Mahi(Coryphaenae Hippurus),这是一种在世界范围内发现的商业和营养重要的鱼类。 Microfluidic technology will be used to closely regulate the simulated marine environment and nanoplastic exposure, while artificial intelligence will be implemented to correlate real time visualization of nanoplastic consumption and fish morphology with environmental conditions – yielding essential data on the factors affecting nanoplastic consumption (e.g., size, concentration, stage of exposure) and the resulting effects on growth and development (e.g., cellular and genetic changes,异常器官的发育,增长迟钝,改变了进食模式)。将在多个教育水平上进行广泛的,非专业的受众的数据传播和教育宣传,包括开发一系列适合年龄的模块,称佛罗里达国际大学的“车轮工程师”计划的“钓鱼塑料”计划,学生和教职员工向学生提供多个教育水平的学生。在“钓鱼塑料”中,学生将探索塑料在海洋中积累的途径,对生态系统的影响以及最小化传播的策略。该项目的跨学科性质还为罗得岛大学的水产养殖学生和佛罗里达国际大学的工程师提供了学习彼此的语言的机会,并通过为本科生的资助,本科生的薪金集团和研究生奖学金来学习彼此的语言,并将学术研究与技术整合在一起。宏观表现。这项研究将机械方法应用于严格的测量 - 原位和实时 - 纳米塑料的生物积累是环境(大小,浓度)和摄取机制(主动与被动与被动的)的函数,以及导致胚胎从幼虫到幼虫阶段的鱼类发育变化。这种方法将为我们对这些因素之间的关系以及纳米塑料之间的关系的基本理解,除了毒性和形态的黑白术语之外,可以深入了解引起这些结果的细胞过程。嵌入包含单个胚胎/幼虫的微流体室中的传感器会生成实时电化学数据,这些数据与透明/半透明鱼的连续视觉测量相关。将使用机器学习对环境影响进行严格的分类,以在应用条件(纳米塑料组成/浓度),发育阶段,摄取机制(被动呼吸/饮酒与主动喂养)和生物积累和形态的视觉测量之间建立关系(tan:nh3/nh4)。实施人工智能以实时和原位获得的多种数据类型相关联是一种独特的方法,可以更全面地了解环境影响,并为将来的比较研究铺平道路。将在多个教育水平上进行广泛的,非专业受众的数据传播和教育宣传,包括开发一系列适合年龄的模块,这些模块对塑料对佛罗里达国际大学的“车轮工程师”计划的环境影响。该项目的跨学科性质还为罗德岛大学的水产养殖学生和佛罗里达国际大学的工程师提供了通过为本科生提供资金,重点是微流体系统设计和传感器整合的Capstone项目以及一项研究生资格的合作的机会,这反映了NSF的法定任务和审查局面的范围,这表明了良好的范围的范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alicia Boymelgreen其他文献
Travelling wave dipolophoresis of ideally polarizable nano-particles with overlapping electric double layers in cylindrical pores
圆柱形孔中具有重叠双电层的理想极化纳米颗粒的行波双电泳
- DOI:
10.1063/1.4884956 - 发表时间:
2014 - 期刊:
- 影响因子:4.6
- 作者:
T. Miloh;Alicia Boymelgreen - 通讯作者:
Alicia Boymelgreen
A theoretical study of induced-charge dipolophoresis of ideally polarizable asymmetrically slipping Janus particles
理想极化不对称滑移Janus粒子感应电荷介电电泳的理论研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Alicia Boymelgreen;T. Miloh - 通讯作者:
T. Miloh
Alicia Boymelgreen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alicia Boymelgreen', 18)}}的其他基金
ISS: Collaborative Research: Individual and Collective Behavior of Active Colloids in Microgravity
ISS:合作研究:微重力下活性胶体的个体和集体行为
- 批准号:
2126479 - 财政年份:2021
- 资助金额:
$ 39.71万 - 项目类别:
Standard Grant
相似国自然基金
钠离子电池Na2MnP2O7正极材料多电子反应调控及可逆机制研究
- 批准号:52207244
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
钠离子电池Na2MnP2O7正极材料多电子反应调控及可逆机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于二维材料黑磷的新型MNP&αIIbβ3受体双重介导的尿激酶递释平台联合光热疗法靶向溶栓研究
- 批准号:82060095
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
生物学可控的Her-MNP纳米平台的构建、评价及分子显像的研究
- 批准号:81671733
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
多功能载紫杉醇靶向磁性纳米粒UP-MNP-C11诊治动脉粥样硬化的实验研究
- 批准号:81270413
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
CAS-MNP: Degradation of Plastics in the Environment: Decoupling the Roles of Polymer Type, Material Attributes, and Chemical Additives
CAS-MNP:环境中塑料的降解:解耦聚合物类型、材料属性和化学添加剂的作用
- 批准号:
2304991 - 财政年份:2023
- 资助金额:
$ 39.71万 - 项目类别:
Continuing Grant
RUI: CAS-MNP: Molecular Behavior at Colloidal/Aqueous Interfaces of Heterogeneous Nano- and Micro-Plastics - Binding Interactions and Effect of Aging
RUI:CAS-MNP:异质纳米和微米塑料胶体/水界面的分子行为 - 结合相互作用和老化效应
- 批准号:
2304814 - 财政年份:2023
- 资助金额:
$ 39.71万 - 项目类别:
Standard Grant
CAS-MNP: Understanding the Interactions Between Small Molecules and Plastic Nanoparticles for Environmental Remediation and Sensing Using Nuclear Magnetic Resonance
CAS-MNP:了解小分子和塑料纳米颗粒之间的相互作用,用于环境修复和核磁共振传感
- 批准号:
2304888 - 财政年份:2023
- 资助金额:
$ 39.71万 - 项目类别:
Standard Grant
Identifying the risks of micro- and nanoplastics (MnP) from agricultural mulching to groundwater
识别农业覆盖物中的微米和纳米塑料 (MnP) 对地下水的风险
- 批准号:
EP/X023958/1 - 财政年份:2023
- 资助金额:
$ 39.71万 - 项目类别:
Fellowship
CAS-MNP: Origins of Secondary Nanoplastics and Mitigating Their Creation
CAS-MNP:二次纳米塑料的起源以及减少其产生
- 批准号:
2301348 - 财政年份:2023
- 资助金额:
$ 39.71万 - 项目类别:
Standard Grant