Robust Limited Memory Hybrid Sparse Solvers
鲁棒的有限内存混合稀疏求解器
基本信息
- 批准号:0102537
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robust Limited Memory Hybrid Sparse SolversSparse linear solvers can be broadly classified as being either 'direct' or 'iterative.' Direct solvers are basedon a factorization of the associated sparse matrix and are extremely robust. However, their memory requirements grow as a non-linear function of the matrix dimension because original zeroes fill-in during factorization.The Krylov subspace (KSP) family of iterative methods are memory scalable, but their convergencecan be slow or fail altogether. This project concerns developing scalable hybrids than can be parameterizedto model the range from pure iterative to pure direct methods. We propose to develop parallel algorithmsand software engineering methods aimed at providing robust, limited memory hybrid solvers that satisfy thecomputational demands of a variety of applications.On the algorithmic front, our focus is on hybrids obtained by preconditioning KSP solvers using suitableincomplete matrix factors. Such preconditioners are robust and widely applicable, but until recently theywere considered unsuitable for parallel computing. The main reason is that the sparse triangular solves forapplying the preconditioner become a bottleneck due to the relatively high latency of communication. Wehave recently developed a latency tolerant 'selective-inversion' scheme that overcomes this problem to yieldan efficient and scalable implementation. In this project, we propose developing parallel sparse factorizationtechniques that are efficient for the entire spectrum of fill-in. We will develop a new 'supernodal diagonalrow block' formulation for scalable incomplete factorization. We will also consider innovative ways ofcombining symbolic (level of fill) and numeric (threshold) strategies to specify fill-in to be either retainedor discarded. Additionally, our algorithmic framework enables us to provide a single, unified, extensibleimplementation of hybrids for symmetric positive definite, symmetric indefinite, and nonsymmetric systems.On the software front, we define a new 'usage model' based 'reverse engineering' process to develop a high-performance domain specific solver as a smart composite of several methods. Our premise is that the right composite solver is domain specific; substantial performance gains can be realized by selecting the right combination of underlying methods to match linear system attributes. We will obtain a uniform interface to a variety of parallel sparse solver software by developing an object-oriented sparse template library that utilizes parameterized polymorphism. Composites will be instantiated by using this template library and a scripting language that supports parallel computing using MPI.Our design goals and performance targets will be keyed to three large-scale computational science applications. The first concerns computational methods for advanced optimization; this application requires robust indefinite solvers. The second is a structural mechanics application for modeling cracks and fractures. The third application involves large sparse eigenvalue problems that arise in quantum molecular dynamics.Our project represents a concerted effort to resolve critical research issues in the area of parallel sparsematrix computations. Our goal is to develop the next generation of sparse solvers by combining research inparallel algorithms and software engineering.
鲁棒的有限内存混合稀疏求解器稀疏线性求解器可以大致分为“直接”或“迭代”。直接求解器基于相关稀疏矩阵的分解,并且非常鲁棒。然而,它们的内存需求随着矩阵维数的非线性函数而增长,因为在分解过程中会填充原始零。Krylov 子空间 (KSP) 系列迭代方法是内存可扩展的,但它们的收敛速度可能很慢或完全失败。该项目涉及开发可扩展的混合方法,可以参数化以对从纯迭代到纯直接方法的范围进行建模。我们建议开发并行算法和软件工程方法,旨在提供强大的、有限内存的混合求解器,以满足各种应用的计算需求。在算法方面,我们的重点是通过使用合适的不完整矩阵因子预处理 KSP 求解器获得的混合求解器。此类预处理器非常强大且适用范围广泛,但直到最近它们还被认为不适合并行计算。主要原因是稀疏三角解决方案由于通信延迟相对较高而成为应用预处理器的瓶颈。我们最近开发了一种容忍延迟的“选择性反转”方案,该方案克服了这个问题,从而产生高效且可扩展的实现。在这个项目中,我们建议开发对整个填充范围有效的并行稀疏分解技术。我们将开发一种新的“超节点对角行块”公式,用于可扩展的不完全分解。我们还将考虑结合符号(填充级别)和数字(阈值)策略的创新方法来指定要保留或丢弃的填充。此外,我们的算法框架使我们能够为对称正定、对称不定和非对称系统提供单一、统一、可扩展的混合实现。在软件方面,我们定义了一种基于“逆向工程”流程的新“使用模型”来开发高性能领域特定求解器作为多种方法的智能组合。我们的前提是,正确的复合求解器是特定于领域的;通过选择正确的底层方法组合来匹配线性系统属性,可以实现显着的性能提升。我们将通过开发利用参数化多态性的面向对象的稀疏模板库,获得各种并行稀疏求解器软件的统一接口。复合材料将通过使用此模板库和支持使用 MPI 进行并行计算的脚本语言进行实例化。我们的设计目标和性能目标将针对三个大规模计算科学应用程序。第一个涉及高级优化的计算方法;该应用程序需要强大的不定求解器。第二个是用于模拟裂缝和断裂的结构力学应用程序。第三个应用涉及量子分子动力学中出现的大型稀疏特征值问题。我们的项目代表了解决并行稀疏矩阵计算领域的关键研究问题的共同努力。我们的目标是通过结合并行算法和软件工程的研究来开发下一代稀疏求解器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Padma Raghavan其他文献
Multi-resource scheduling of moldable workflows
可成型工作流程的多资源调度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. Perotin;Sandhya Kandaswamy;Hongyang Sun;Padma Raghavan - 通讯作者:
Padma Raghavan
Journal of Parallel and Distributed Computing
并行与分布式计算杂志
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
L. Perotin;S;hya K;aswamy;hya;aswamy;Hongyang Sun;Padma Raghavan - 通讯作者:
Padma Raghavan
Realizing the potential of data science
实现数据科学的潜力
- DOI:
10.1145/3188721 - 发表时间:
2018-03-26 - 期刊:
- 影响因子:22.7
- 作者:
F. Berman;Rob A. Rutenbar;B. Hailpern;Henrik Christensen;S. Davidson;D. Estrin;Michael J. Franklin;M. Martonosi;Padma Raghavan;V. Stodden;A. Szalay - 通讯作者:
A. Szalay
Padma Raghavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Padma Raghavan', 18)}}的其他基金
NSF I-Corps Hub (Track 1): Mid-South Region
NSF I-Corps 中心(轨道 1):中南部地区
- 批准号:
2229521 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
NSF I-Corps Hub (Track 1): Mid-South Region
NSF I-Corps 中心(轨道 1):中南部地区
- 批准号:
2229521 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale
合作研究:SHF:小型:大规模学习容错
- 批准号:
2135309 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
- 批准号:
1719674 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
- 批准号:
1319448 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
DC: Small: Adaptive Sparse Data Mining On Multicores
DC:小型:多核上的自适应稀疏数据挖掘
- 批准号:
1017882 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
MRI: Acquistion of A Scalable Instrument for Discovery through Computing
MRI:获取可扩展的仪器,通过计算进行发现
- 批准号:
0821527 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Toward a Linear Time Sparse Solver with Locality-Enhanced Scalable Parallelism
具有局部增强的可扩展并行性的线性时间稀疏求解器
- 批准号:
0830679 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
CSR-SMA: Toward Model-Driven Multilevel Analysis and Optimization of Multicomponent Computer Systems
CSR-SMA:迈向模型驱动的多组件计算机系统的多级分析和优化
- 批准号:
0720749 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Adaptive Software for Extreme-Scale Scientific Computing: Co-Managing Quality-Performance-Power Tradeoffs
用于超大规模科学计算的自适应软件:共同管理质量-性能-功耗权衡
- 批准号:
0444345 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
有限频域性能约束的非线性互联大系统有记忆模糊控制研究
- 批准号:62373152
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
形状记忆聚合物三维有限变形本构模型的建立与应用研究
- 批准号:11402217
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
带记忆项和非线性源的粘弹性方程解的研究
- 批准号:11301277
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模非线性方程组问题的有限记忆拟牛顿方法研究
- 批准号:11261006
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
基于有限元的记忆合金牵张器优化及个体化下颌骨牵张实验研究
- 批准号:30801299
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Intraindividual cognitive variability in aging adults with Down syndrome: associations with Alzheimer's disease plasma biomarkers, neuropathology and clinical dementia
患有唐氏综合症的老年人的个体内认知变异:与阿尔茨海默病血浆生物标志物、神经病理学和临床痴呆的关联
- 批准号:
10724057 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Pilot of Memory Support System for Older Chinese Americans with Mild Cognitive Impairment
针对患有轻度认知障碍的老年华裔美国人的记忆支持系统试点
- 批准号:
10728571 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Maternal stress and undernutrition: Interactive effects on newborn and child outcomes in Ethiopia”
孕产妇压力和营养不良:对埃塞俄比亚新生儿和儿童结局的交互影响
- 批准号:
10571122 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating the tissue location and protective function of oral vaccine-specific tissue resident memory CD4 T cells
研究口服疫苗特异性组织驻留记忆 CD4 T 细胞的组织定位和保护功能
- 批准号:
10646930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SARS-CoV-2 vaccine durability during SIV infection
SIV 感染期间 SARS-CoV-2 疫苗的耐久性
- 批准号:
10618112 - 财政年份:2023
- 资助金额:
-- - 项目类别: