Geometric and Analytic Problems in Several Complex Variables

多个复杂变量的几何和解析问题

基本信息

  • 批准号:
    0100330
  • 负责人:
  • 金额:
    $ 20.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

One of the basic geometric and analytic problems in several complex variables is to determine when two real submanifolds in multidimensional complex space are locally biholomorphically equivalent. That is, when is it possible to find a local invertible holomorphic transformation sending one submanifold onto the other? This problem has attracted the attention of many mathematicians since the beginning of the twentieth century, starting with the work of Poincare and continuing with the major contributions of E. Cartan, Tanaka, Chern, Moser and others. The principal investigators will continue their research on several aspects of this problem. In particular, they will focus on determining when it is possible to reduce the biholomorphic equivalence problem to solving systems of polynomial equations with complex coefficients. They also plan to determine when a formal mapping sending a real submanifold into another is necessarily convergent. In addition, they will attempt to categorize those submanifolds for which such mappings are determined by finitely many derivatives at a given point. They expect that this study will lead to the discovery of new geometric, analytic, as well as algebraic invariants of these submanifolds.The Principal Investigators will continue their study of fundamental properties of analytic and geometric objects, such as surfaces and curves, in multidimensional complex spaces. A complete classification of these mathematical objects can have important implications for a number of other questions in mathematical science. In fact, this study is motivated by the rich interplay between several areas of mathematics and physics, including control theory, string theory, and other areas of mathematical physics. Progress on the problems proposed by the Principal Investigators will likely have impact on the above-mentioned areas as well.
多个复变量中的基本几何和解析问题之一是确定多维复空间中的两个实子流形何时局部双全纯等价。也就是说,什么时候可以找到将一个子流形发送到另一个子流形的局部可逆全纯变换?自二十世纪初以来,这个问题吸引了许多数学家的关注,从庞加莱的工作开始,一直到嘉当、田中、陈省身、莫泽等人的主要贡献。主要研究人员将继续研究这个问题的几个方面。特别是,他们将重点关注确定何时可以将双全纯等价问题简化为求解具有复系数的多项式方程组。他们还计划确定将一个真实子流形发送到另一个子流形的正式映射何时必然收敛。此外,他们将尝试对那些子流形进行分类,这些子流形的映射是由给定点的有限多个导数确定的。他们期望这项研究将导致发现这些子流形的新几何、解析以及代数不变量。主要研究人员将继续研究多维复杂中的解析和几何对象的基本属性,例如曲面和曲线空间。这些数学对象的完整分类可以对数学科学中的许多其他问题产生重要影响。 事实上,这项研究的动机是数学和物理的多个领域之间丰富的相互作用,包括控制理论、弦理论和数学物理的其他领域。首席研究员提出的问题的进展也可能对上述领域产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Rothschild其他文献

Linda Rothschild的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Rothschild', 18)}}的其他基金

Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
  • 批准号:
    0701070
  • 财政年份:
    2007
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
  • 批准号:
    0400880
  • 财政年份:
    2004
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
  • 批准号:
    9801258
  • 财政年份:
    1998
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric and Analytic Problems in Several Complex Variables and Partial Equations
数学科学:多个复变量和偏方程的几何和解析问题
  • 批准号:
    9501516
  • 财政年份:
    1995
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Southern California Analysis & Partial Differential Equations Seminar
数学科学:南加州分析
  • 批准号:
    9204937
  • 财政年份:
    1992
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Several Complex Variablesand Partial Differential Equations.
数学科学:多个复变量和偏微分方程中的问题。
  • 批准号:
    9203973
  • 财政年份:
    1992
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Several Complex Variables and PartialDifferential Equations
数学科学:多个复变量和偏微分方程
  • 批准号:
    8901268
  • 财政年份:
    1989
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analyticity of Solutions of Partial Differential Equations and Holomorphic Extendability
数学科学:偏微分方程解的解析性和全纯可拓性
  • 批准号:
    8601260
  • 财政年份:
    1986
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Existence, Smoothness and Analyticityfor Solutions of Some Linear Partial Differential Equations
数学科学:某些线性偏微分方程解的存在性、光滑性和解析性
  • 批准号:
    8319819
  • 财政年份:
    1984
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Hypoelliptic Partial Differential Operators
亚椭圆偏微分算子
  • 批准号:
    7701155
  • 财政年份:
    1977
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant

相似国自然基金

弱约束条件下超高维函数型数据分析的一些问题
  • 批准号:
    12371268
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
双曲型液晶弹性体动力学方程的分析和渐近问题
  • 批准号:
    12371224
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
相位敏感型光学相干层析成像中相位泄漏问题的分析与消除
  • 批准号:
    61905141
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
超高维函数型数据分析中的若干问题
  • 批准号:
    11901313
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
  • 批准号:
    RGPIN-2016-06329
  • 财政年份:
    2021
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
  • 批准号:
    RGPIN-2016-06329
  • 财政年份:
    2021
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Discovery Grants Program - Individual
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
  • 批准号:
    20H01801
  • 财政年份:
    2020
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
  • 批准号:
    RGPIN-2016-06329
  • 财政年份:
    2020
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
  • 批准号:
    RGPIN-2016-06329
  • 财政年份:
    2020
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了