Sharp Sobolev and Holder estimates on domains of finite type

Sharp Sobolev 和 Holder 对有限类型域的估计

基本信息

  • 批准号:
    0071583
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Koenig其他文献

Kenneth Koenig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Koenig', 18)}}的其他基金

Conference: Midwest Several Complex Variables Conference at Ohio State University
会议:俄亥俄州立大学中西部多个复杂变量会议
  • 批准号:
    2302532
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Problems in several complex variables and partial differential equations
多个复变量和偏微分方程的问题
  • 批准号:
    0654120
  • 财政年份:
    2007
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
  • 批准号:
    0400505
  • 财政年份:
    2004
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Problems in harmonic analysis and several complex variables
调和分析中的问题和几个复变量
  • 批准号:
    0457500
  • 财政年份:
    2004
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似国自然基金

Fock-Sobolev空间上的算子与算子代数
  • 批准号:
    12371127
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
几类上半空间精确Hardy-Littlewood-Sobolev型积分不等式
  • 批准号:
    12371119
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
可积系统在加权Sobolev初值下整体解的存在性和渐近性---RH方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
关于Orlicz-Sobolev空间嵌入若干问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带位势的Sobolev临界或超临界Schrödinger方程(组)正规化解及其性态研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
非有界な距離空間上のSobolev型不等式の研究
无界度量空间上Sobolev型不等式的研究
  • 批准号:
    24K06816
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Best evaluation of Sobolev inequality using reproducing kernel and study of its application to science and engineering
再现核索博列夫不等式的最佳评价及其科学与工程应用研究
  • 批准号:
    23K03239
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
  • 批准号:
    2247429
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了