Surface Chemistry Studies During Thin-Film Growth Using Electrochemical Atomic Layer Epitaxy (EC-ALE)

使用电化学原子层外延 (EC-ALE) 进行薄膜生长过程中的表面化学研究

基本信息

项目摘要

The goal of this project is greater understanding and control of electrochemical epitaxial processing of compound semiconductors. The focus of the project is atomic layer epitaxy (ALE), where deposits are formed an atomic layer at a time. In ALE, surface limited reactions are used to form each atomic layer. Surface limited electrochemical reactions generally occur at underpotentials, potentials below those needed to deposit the element on itself. The approach makes use of an automated electrochemical flow-cell, which facilitates growth of films thick enough for analysis by X-ray diffraction (XRD), electron microprobe analysis (EPMA), infrared (IR), and optical spectroscopies. Previous EC-ALE studies have focused either on the first few atomic layers or the structure, composition, and morphology of completed films. This project will address surface chemistry of the EC-ALE cycle as the deposit is being formed. It is thought that optimal conditions (potentials) change as the deposit grows, and some form of feedback is needed to better control the process. However, currents measured during various cycle steps do not provide an accurate picture of the deposition process. It is proposed to study the surface chemistry after various numbers of cycles, and at different points in the cycle, while deposits are forming, that is, to follow the surface chemistry during the 2nd , 5th , 10th , 25th , -..200th , cycles. Surface sensitive probes will be used to follow the EC-ALE cycle chemistry during film growth. A unique electrochemical STM flow-cell will be used to monitor surface structure and morphology during deposition. This apparatus allows atomic scale imaging in a controlled environment where solutions are easily exchanged and EC-ALE deposits can be formed. The mass of the deposits will be monitored at each step in the EC-ALE cycle using an electrochemical quartz crystal microbalance (EC-QCM) system. A microbalance crystal will be used as a substrate in a flow-cell. The mass of the deposit at each step will be compared with observed currents to elucidate interfacial processes and current efficiencies. An electrochemical flow-cell deposition system will be constructed for use in the antechamber of a UHV surface system, so that the composition of the surface can be monitored after any number of cycles and after any cycle step. Deposits will be transferred periodically from the flow cell directly to the analysis chamber for examination with AES, XPS, LEED, STM, and LEIS. Improved understanding of the surface chemistry, leading to better control over deposit structure, composition and morphology is expected. InAs and InSb are being grown using EC-ALE and work on the formation of III-V compounds in general will continue. CdSe/CdTe and InAs/InSb superlattices have been formed, and will continue to be studied.%%%The project addresses basic research issues in a topical area of materials science with high technological relevance. New, innovative experimental techniques such as electrochemical atomic layer epitaxy can now be characterized more fully leading to greater understanding and control of elementary chemical and diffusion processes which will allow advances in fundamental materials science and technology. The basic knowledge and understanding gained from the research is expected to contribute to improving the ability to efficiently deposit high crystal quality semiconductor films for electronic and photonic applications. An important feature of the program is the integration of research and education through the training of students in a fundamentally and technologically significant area.***
该项目的目的是对复合半导体的电化学外延处理的更深入和控制。该项目的重点是原子层外延(ALE),其中一个沉积物一次形成原子层。在啤酒中,表面有限反应用于形成每个原子层。表面有限的电化学反应通常发生在义务范围内,低于沉积元件所需的电位。该方法利用自动化的电化学流量细胞,该电池促进了足够厚的膜的生长,以通过X射线衍射(XRD),电子微探针分析(EPMA),红外线(IR)和光谱光谱法分析。先前的EC-ALE研究集中在前几个原子层或完整膜的结构,组成和形态上。该项目将随着矿床的形成,将解决EC-ale循环的表面化学。人们认为,随着存款的增长,最佳条件(潜在)会发生变化,并且需要某种形式的反馈来更好地控制过程。但是,在各个循环步骤中测得的电流并不能准确地描述沉积过程。提议在各种循环数量后研究表面化学,在周期中的不同点处,即沉积物在形成时,即在第二,第5、10、25、25,.. 200th Cycles遵循表面化学。表面敏感的探针将用于遵循膜生长期间的EC-ale循环化学。独特的电化学STM流量细胞将用于监测沉积过程中的表面结构和形态。该设备允许在受控环境中易于交换溶液并形成EC-ale沉积物的原子尺度成像。将使用电化学石英晶体微量平衡(EC-QCM)系统在EC-ale循环中的每个步骤中监测沉积物的质量。微平衡晶体将用作流细胞中的底物。每个步骤的沉积物质量将与观察到的电流进行比较,以阐明界面过程和电流效率。将构建电化学流量细胞沉积系统,用于在UHV表面系统的横切室中使用,以便在任何数量的周期和任何周期步骤之后都可以监测表面的组成。沉积物将定期从流动池转移到分析室进行AES,XPS,LEED,STM和LIEW检查。对表面化学的了解得以提高,从而可以更好地控制沉积结构,组成和形态。 INAS和INSB正在使用EC-ale生长,并在一般来说,在III-V化合物的形成方面都将继续进行。 CDSE/CDTE和INAS/INSB超级晶格已经形成,并将继续研究。%%%该项目解决了具有高技术相关性的材料科学主题领域的基础研究问题。现在,可以更充分地表征新的创新实验技术,例如电化学原子层的外观,从而更加充分地了解基本化学和扩散过程,从而可以在基本材料科学和技术方面取得进步。预计从研究中获得的基本知识和理解力有助于提高有效地为电子和光子应用沉积高晶体质量半导体膜的能力。 该计划的一个重要特征是通过培训学生在根本和技术意义的领域中培训研究和教育。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Stickney其他文献

John Stickney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Stickney', 18)}}的其他基金

Formation of Germanene, the Ge Analog of Graphene, using Electrochemical Atomic Layer Deposition (E-ALD)
使用电化学原子层沉积 (E-ALD) 形成锗烯(石墨烯的 Ge 类似物)
  • 批准号:
    1410109
  • 财政年份:
    2014
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
Condensed Phase Atomic Layer Deposition (CP-ALD)
凝聚相原子层沉积 (CP-ALD)
  • 批准号:
    1006747
  • 财政年份:
    2010
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
Metal Semiconductor Interface Growth Using Electrochemical Atomic Layer Deposition (ALD)
使用电化学原子层沉积 (ALD) 进行金属半导体界面生长
  • 批准号:
    0704142
  • 财政年份:
    2007
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
Structure Control in Electrochemical Atomic Layer Eptiaxy
电化学原子层外延中的结构控制
  • 批准号:
    0312130
  • 财政年份:
    2003
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
NER: Electrodeposition of Nanostructured Compound Semiconductors
NER:纳米结构化合物半导体的电沉积
  • 批准号:
    0210506
  • 财政年份:
    2002
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Surface Limited Reactions in the Electrochemical Atomic Layer Processing of Compound Semiconductors
化合物半导体电化学原子层加工中的表面有限反应
  • 批准号:
    9708653
  • 财政年份:
    1997
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
Compound Semiconductor Electrodeposition by Electrochemical Atomic Layer Epitaxy
电化学原子层外延化合物半导体电沉积
  • 批准号:
    9400570
  • 财政年份:
    1994
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
Electrochemical Atomic Layer Epitaxy
电化学原子层外延
  • 批准号:
    9017431
  • 财政年份:
    1991
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

胰腺癌特异性外泌体表面蛋白的筛选与电化学发光高通量检测新方法研究
  • 批准号:
    22304015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单分子表面增强拉曼—荧光光谱双模分析方法原位研究化学反应
  • 批准号:
    22372121
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
超双疏表面静电驱动化学反应及其可控性研究
  • 批准号:
    22375169
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
有机硅基团表面化学反应研究
  • 批准号:
    22372119
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于捕收剂自组装效应的ZnS表面微纳结构与电化学性能调控基础研究
  • 批准号:
    52304286
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

光表面化学修飾法による極薄カーボン系膜の低温コーティング技術に関する研究
光学表面化学改性法超薄碳膜低温镀膜技术研究
  • 批准号:
    24K08255
  • 财政年份:
    2024
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of edible sorbent therapies to mitigate dietary exposures to per- and polyfluoroalkyl substances (PFAS)
开发可食用吸附剂疗法以减少膳食中全氟烷基物质和多氟烷基物质 (PFAS) 的暴露
  • 批准号:
    10590799
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
Project 1: Neutralizing and decolonizing Clostridioides difficile using mRNA vaccines
项目 1:使用 mRNA 疫苗对艰难梭菌进行中和和去定植
  • 批准号:
    10625577
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
A wearable device for continuous monitoring of methadone
用于连续监测美沙酮的可穿戴设备
  • 批准号:
    10787069
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
  • 批准号:
    10630541
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了