Formation of Germanene, the Ge Analog of Graphene, using Electrochemical Atomic Layer Deposition (E-ALD)

使用电化学原子层沉积 (E-ALD) 形成锗烯(石墨烯的 Ge 类似物)

基本信息

项目摘要

Non-technical Description: This project involves the formation of a new material with unique properties that could potentially be used to develop and improve on a range of functional devices. One of the most exciting new materials is called graphene, atomically thin sheets of carbon in the shape of "chicken wire" with properties never seen before. It is anticipated that radio-frequency devices will improve dramatically when graphene is incorporated. Calculations suggest that silicon and germanium may form analogs of graphene: silicene and germanene, respectively. However, stand-alone sheets of those materials have not been realized in laboratories. Most attempts to form them have involved high temperatures. Work by this research team has involved the use of electrodeposition, a room-temperature growth technique, and the results so far have been encouraging. The primary importance of this project, besides the formation of germanene, is the training of future scientists. This research group is composed of a mix of undergraduate and graduate students, half of whom are women. Results of this project are published in the peer reviewed literature and described in presentations at national and international scientific meetings.Technical Description: This research project is on the growth and characterization of germanene, the Ge analog of graphene. Ab initio calculations have indicated that germanene should be stable and have properties similar to graphene. Formation of germanene has not yet been reported in the literature, however. The Si analog of graphene, silicene, has been reported, though only as single atomic layers of covalently bound Si on metal surfaces in vacuum. This project involves developing chemical methods to grow germanene nanofilms via the electrochemical analog of atomic layer deposition (E-ALD), and determining the mechanism for its growth and optimization. Characterization of the structure, morphology and composition of deposits is performed with surface analytical methods such as photoelectron spectroscopy, low energy electron diffraction, in-situ scanning tunneling microscopy, as well as with thin film techniques such as microprobe, X-ray diffraction, transmission electron microscopy, and Raman spectroscopy (including in-situ Raman measurements). The project also attempts to develop methods for removing germanene from the substrate so that its intrinsic properties can be better measured.
非技术描述:该项目涉及形成一种具有独特性能的新材料,该材料可用于开发和改进一系列功能设备。最令人兴奋的新材料之一是石墨烯,它是“鸡丝”形状的原子薄片碳,具有以前从未见过的特性。预计当加入石墨烯时,射频设备将得到显着改善。计算表明,硅和锗可能分别形成石墨烯的类似物:硅烯和锗烯。然而,这些材料的独立片材尚未在实验室中实现。大多数形成它们的尝试都涉及高温。该研究小组的工作涉及使用电沉积(一种室温生长技术),迄今为止的结果令人鼓舞。除了形成锗烯之外,该项目的首要重要性是培训未来的科学家。该研究小组由本科生和研究生组成,其中一半是女性。该项目的结果发表在同行评审的文献中,并在国内和国际科学会议的演讲中进行了描述。技术描述:该研究项目是关于石墨烯的锗类似物锗烯的生长和表征。从头计算表明,锗烯应该是稳定的并且具有与石墨烯类似的性质。然而,文献中尚未报道锗烯的形成。石墨烯的硅类似物硅烯已被报道,尽管仅是真空中金属表面上共价键合硅的单原子层。该项目涉及开发化学方法,通过原子层沉积(E-ALD)的电化学模拟来生长锗烯纳米膜,并确定其生长和优化的机制。通过表面分析方法(例如光电子能谱、低能电子衍射、原位扫描隧道显微镜)以及薄膜技术(例如微探针、X 射线衍射、透射)对沉积物的结构、形态和成分进行表征。电子显微镜和拉曼光谱(包括原位拉曼测量)。该项目还尝试开发从基材中去除锗烯的方法,以便更好地测量其固有特性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrogen Sorption Kinetics on Bare and Platinum-Modified Palladium Nanofilms, Grown by Electrochemical Atomic Layer Deposition (E-ALD)
通过电化学原子层沉积 (E-ALD) 生长的裸钯纳米膜和铂改性钯纳米膜的氢吸附动力学
  • DOI:
    10.1149/2.0051612jes
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jagannathan, Kaushik;Benson, David M.;Robinson, David B.;Stickney, John L.
  • 通讯作者:
    Stickney, John L.
Electrochemical Formation of Germanene: pH 4.5
  • DOI:
    10.1149/2.1221707jes
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Maria Ledina;N. Bui;Xuehai Liang;Youn-Geun Kim;Jin-Young Jung;Brian R. Perdue;C. Tsang;J. Drnec;F. Carlá;M. Soriaga;T. Reber;J. Stickney
  • 通讯作者:
    Maria Ledina;N. Bui;Xuehai Liang;Youn-Geun Kim;Jin-Young Jung;Brian R. Perdue;C. Tsang;J. Drnec;F. Carlá;M. Soriaga;T. Reber;J. Stickney
(Invited) Investigations into the Formation of Germanene Using Electrochemical Atomic Layer Deposition (E-ALD)
  • DOI:
    10.1149/06606.0129ecst
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria Ledina;Xuehai Liang;Youn-Geun Kim;Jin-Young Jung;Brian R. Perdue;C. Tsang;M. Soriaga;J. Stickney
  • 通讯作者:
    Maria Ledina;Xuehai Liang;Youn-Geun Kim;Jin-Young Jung;Brian R. Perdue;C. Tsang;M. Soriaga;J. Stickney
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Stickney其他文献

John Stickney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Stickney', 18)}}的其他基金

Condensed Phase Atomic Layer Deposition (CP-ALD)
凝聚相原子层沉积 (CP-ALD)
  • 批准号:
    1006747
  • 财政年份:
    2010
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant
Metal Semiconductor Interface Growth Using Electrochemical Atomic Layer Deposition (ALD)
使用电化学原子层沉积 (ALD) 进行金属半导体界面生长
  • 批准号:
    0704142
  • 财政年份:
    2007
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant
Structure Control in Electrochemical Atomic Layer Eptiaxy
电化学原子层外延中的结构控制
  • 批准号:
    0312130
  • 财政年份:
    2003
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant
NER: Electrodeposition of Nanostructured Compound Semiconductors
NER:纳米结构化合物半导体的电沉积
  • 批准号:
    0210506
  • 财政年份:
    2002
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Standard Grant
Surface Chemistry Studies During Thin-Film Growth Using Electrochemical Atomic Layer Epitaxy (EC-ALE)
使用电化学原子层外延 (EC-ALE) 进行薄膜生长过程中的表面化学研究
  • 批准号:
    0075868
  • 财政年份:
    2000
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant
Surface Limited Reactions in the Electrochemical Atomic Layer Processing of Compound Semiconductors
化合物半导体电化学原子层加工中的表面有限反应
  • 批准号:
    9708653
  • 财政年份:
    1997
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant
Compound Semiconductor Electrodeposition by Electrochemical Atomic Layer Epitaxy
电化学原子层外延化合物半导体电沉积
  • 批准号:
    9400570
  • 财政年份:
    1994
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant
Electrochemical Atomic Layer Epitaxy
电化学原子层外延
  • 批准号:
    9017431
  • 财政年份:
    1991
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of stable intermediates for handling by hydrogenation of monolayer germanene
开发用于单层锗烯氢化处理的稳定中间体
  • 批准号:
    23H01811
  • 财政年份:
    2023
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hexagonal-Ge結晶薄膜形成による光機能創発
通过形成六方Ge晶体薄膜实现光学功能
  • 批准号:
    22K04869
  • 财政年份:
    2022
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Direct growth of germanene between h-BN layers
h-BN 层之间直接生长锗烯
  • 批准号:
    20K15134
  • 财政年份:
    2020
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Alkaline Earth Metal-Mediated Molecular Beam Epitaxy Method and Construction of Novel Group IV Low-Dimensional Structures
碱土金属介导分子束外延方法的发展及新型IV族低维结构的构建
  • 批准号:
    18K04883
  • 财政年份:
    2018
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Demonstration of germanene field effect transistor and process development
锗烯场效应晶体管演示及工艺开发
  • 批准号:
    17H02788
  • 财政年份:
    2017
  • 资助金额:
    $ 39.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了