Non-linear equations in analysis and geometry
分析和几何中的非线性方程
基本信息
- 批准号:0070492
- 负责人:
- 金额:$ 17.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with two main projects. The former focuses onvarious questions in sub-Riemannian geometry and in the closely connectedanalysis of sub-elliptic pde's and systems. The PI proposes to investigatethe classification of non-negative entire solutions to non-linearequations in groups of Heisenberg type, and compute the best constants inthe Folland-Stein Sobolev embedding. This program is instrumental to apossible attack of the compact CR Yamabe problem in the open case of CRmanifolds of co-dimension higher than one. The geometric case of suchembedding will also be investigated along with the relative isoperimetricinequalities. The PI also proposes to study the regularity of minimalsurfaces, the question of traces on lower dimensinal sub-manifolds offunctions having integrable horizontal derivatives. The basic boundaryvalue problems, such as the Dirichlet and the Neumann problem will also beinvestigated, and a theory of variational inequalities and regularity of"free boundaries" will be developed. The second project is concerned withvarious problems in which symmetry plays an important role. One of them isconcerned with the determination of the extremal functions in theTomas-Stein restriction theorem for the Fourier transform. Other problemsare connected with symmetry in the exterior obstacle problem, a conjectureof De Giorgi connected to minimal surfaces, and symmetry in the evolutionof surfaces driven by mean curvature.Partial differential equations and systems formed by the latter are thebasic laws which describe most natural phenomena. An understanding of thephysical world also requires grasping the underlying geometric structureof the latter in its various forms. The present proposal belongs to thatmainstream of research which sits at the confluence of the theory ofpartial differential equations and systems, both linear and non-linear,and their connections with an emerging type of geometry, calledsub-Riemannian geometry. Both theories have witnessed an explosion ofinterest in the last decade and they continue to attract the interest ofvarious schools of mathematicians both nationwide and abroad. Another mainpart of this proposal is devoted to the study of physical and mathematicalproblems in which symmetry plays an important role. Symmetry is presenteverywhere in nature, a remarkable instance being the fundamental lawsof gravitation and electrostatic attraction. The study of conditions underwhich a given natural phenomenon develops symmetries is both important forits practical consequences (the presence of symmetriesdrastically reduces the human effort) and for its implicationsin the furthering of our knowledge.
该提案涉及两个主要项目。前者侧重于次黎曼几何中的各种问题以及次椭圆偏微分方程和系统的密切相关分析。 PI 提议研究海森堡型群中非线性方程组非负整解的分类,并计算 Folland-Stein Sobolev 嵌入中的最佳常数。该程序有助于在余维大于 1 的 CR 流形的开放情况下解决紧凑 CR Yamabe 问题。还将研究这种嵌入的几何情况以及相对等周不等式。 PI还建议研究最小曲面的正则性,即具有可积水平导数的函数的低维子流形上的迹问题。还将研究基本边值问题,例如狄利克雷和诺伊曼问题,并发展变分不等式和“自由边界”正则性理论。第二个项目涉及对称性起着重要作用的各种问题。其中之一涉及傅立叶变换托马斯-斯坦限制定理中极值函数的确定。其他问题与外部障碍问题中的对称性、与最小曲面相关的德乔治猜想以及由平均曲率驱动的曲面演化中的对称性有关。偏微分方程和由后者形成的系统是描述大多数自然现象的基本定律。对物理世界的理解还需要掌握后者各种形式的基本几何结构。本提案属于主流研究,该研究融合了线性和非线性偏微分方程和系统理论及其与新兴几何类型(称为亚黎曼几何)的联系。这两种理论在过去十年中都引起了人们的极大兴趣,并且继续吸引着国内外各流派数学家的兴趣。该提案的另一个主要部分致力于研究对称性起着重要作用的物理和数学问题。对称性在自然界中随处可见,一个显着的例子是万有引力和静电引力的基本定律。对给定自然现象产生对称性的条件的研究不仅对于其实际后果(对称性的存在大大减少了人类的努力)而且对于进一步加深我们的知识的影响都很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Garofalo其他文献
A fundamental solution for a subelliptic operator in Finsler geometry
Finsler 几何中次椭圆算子的基本解
- DOI:
10.1007/s00277-005-1019-3 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:3.5
- 作者:
Federica Dragoni;Nicola Garofalo;Gianmarco Giovannardi;P. Salani - 通讯作者:
P. Salani
Sub-Riemannian calculus on hypersurfaces in Carnot groups
卡诺群超曲面上的亚黎曼微积分
- DOI:
10.1016/j.aim.2007.04.004 - 发表时间:
2006-07-21 - 期刊:
- 影响因子:1.7
- 作者:
D. Danielli;Nicola Garofalo;D. Nhieu - 通讯作者:
D. Nhieu
Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips
图形条的亚黎曼微积分和周长的单调性
- DOI:
10.1007/s00209-009-0533-8 - 发表时间:
2008-09-16 - 期刊:
- 影响因子:0.8
- 作者:
D. Danielli;Nicola Garofalo;Nicola Garofalo;D. Nhieu - 通讯作者:
D. Nhieu
A Rellich type estimate for a subelliptic Helmholtz equation with mixed homogeneities
混合齐次亚椭圆亥姆霍兹方程的Rellich型估计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Agnid Banerjee;Nicola Garofalo - 通讯作者:
Nicola Garofalo
Nicola Garofalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola Garofalo', 18)}}的其他基金
Monotonicity formulas, nonlinear PDE's and sub-Riemannian Geometry
单调性公式、非线性偏微分方程和亚黎曼几何
- 批准号:
1001317 - 财政年份:2010
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations in Sub-Riemannian Geometry
亚黎曼几何中的非线性偏微分方程
- 批准号:
0701001 - 财政年份:2007
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
- 批准号:
9706892 - 财政年份:1997
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Unique Continuation, Quantitative Properties of Solutions and Symmetry for PDE's
数学科学:“偏微分方程的独特连续性、解的定量性质和对称性
- 批准号:
9104023 - 财政年份:1991
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
8905338 - 财政年份:1989
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
9096158 - 财政年份:1989
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
相似国自然基金
非线性噪音驱动的非自治BBM方程拉回随机吸引子的稳定性
- 批准号:12301303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
- 批准号:12361076
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
PT对称修正非局域非线性薛定谔方程描述的飞秒孤子和畸形波的操控研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非局域非线性色散方程Cauchy问题的反散射变换
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类非线性偏微分方程多峰解的存在性及性态研究
- 批准号:12126324
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Machine Learning techniques applied to non-linear differential equations
应用于非线性微分方程的机器学习技术
- 批准号:
572217-2022 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
University Undergraduate Student Research Awards
Machine Learning techniques applied to non-linear differential equations
应用于非线性微分方程的机器学习技术
- 批准号:
572217-2022 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
University Undergraduate Student Research Awards
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Research Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)