RUI: Research in O-minimality and Related Topics

RUI:O-极小性及相关主题的研究

基本信息

  • 批准号:
    0070743
  • 负责人:
  • 金额:
    $ 8.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-15 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

The project deals with questions concerning o-minimality, extensions ofo-minimality, and classes of finite structures. Some of the problems having to do with o-minimality relate to expansions of archetypal o-minimal structures and structures whose domain has as its order type that of the real numbers. Other have as their focus abelian groups definable in o-minimal structures or the development of o-minimal analogues of differential and algebraic topological methods and tools. Problems concerning extensions of o-minimality have to do in particular with weak o-minimality, local o-minimality, and, in analogy with Morley rank, the development of a model theory for ordered structures of finite rank. The third main topic of the project involves classes of finite structures with dimension and measure. This work has as its aim the development of a model theory for classes of finite structures that is in analogy with mainstream model theory for infinite structures. The results obtained to date and the examples that have been found suggest that there is much to be done.The research outlined above concerns model theory, one of the principal subfields of mathematical logic. Model theorists study properties of familiar mathematical structures that can be expressed in a formal mathematical language such as predicate logic. This distinctive point of view can provide insights and understanding into such structures that otherwise might prove elusive. One aspect of this project focuses on structures that include and behave in important ways like the ordered field of real numbers, that is, the real numbers together with the polynomial and algebraic functions that are studied in first-year calculus and describe many phenomena. Model theory has played a key role in many of the significant advances that have been made in the last ten years. These have deepened our understanding of familiar mathematical systems in such diverse areas of the mathematical sciences as the analysis and geometry of real functions, neural nets, and relational database theory. Applications also have been made in economics. A second principal aspect of the project deals with classes of finite structures. Finite structures in general are central to computer science: any database can be construed as a finite structure in the sense in which they are studied in here, and a particular class of finite structures called finite fields are especially important in cryptology.
该项目处理有关 o-minimality、ofo-minimality 的扩展和有限结构类的问题。与 o 极小性有关的一些问题涉及原型 o 极小结构和其域具有实数顺序类型的结构的扩展。其他人则以可在 o 最小结构中定义的阿贝尔群或微分和代数拓扑方法和工具的 o 最小类似物的开发为重点。有关 o 极小性扩展的问题尤其与弱 o 极小性、局部 o 极小性以及与莫利等级类似的有限等级有序结构模型理论的发展有关。该项目的第三个主要主题涉及具有维度和度量的有限结构类。这项工作的目标是开发一种与无限结构的主流模型理论类似的有限结构类模型理论。迄今为止获得的结果和已发现的例子表明还有很多工作要做。 上述研究涉及模型理论,它是数理逻辑的主要子领域之一。模型理论家研究熟悉的数学结构的属性,这些结构可以用形式数学语言(例如谓词逻辑)来表达。这种独特的观点可以提供对此类结构的见解和理解,否则这些结构可能难以捉摸。该项目的一个方面重点关注包含实数有序域并以重要方式表现的结构,即实数以及第一年微积分中研究的多项式和代数函数,并描述许多现象。模型理论在过去十年取得的许多重大进展中发挥了关键作用。这些加深了我们对数学科学不同领域中熟悉的数学系统的理解,例如实函数的分析和几何、神经网络和关系数据库理论。在经济学中也有应用。该项目的第二个主要方面涉及有限结构的类别。一般来说,有限结构是计算机科学的核心:任何数据库都可以被解释为这里研究的有限结构,并且一类称为有限域的特殊有限结构在密码学中尤其重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Steinhorn其他文献

Charles Steinhorn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Steinhorn', 18)}}的其他基金

NSF/CBMS Regional Research Conferences in Mathematics
NSF/CBMS 数学区域研究会议
  • 批准号:
    1804259
  • 财政年份:
    2018
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Summer STEM Teaching Experiences for Undergraduates from Liberal Arts Institutions
文科院校本科生暑期 STEM 教学体验
  • 批准号:
    1525691
  • 财政年份:
    2015
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Travel Awards to Attend the Fifteenth Latin American Symposium on Mathematical Logic
参加第十五届拉丁美洲数理逻辑研讨会的旅行奖
  • 批准号:
    1237389
  • 财政年份:
    2012
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Travel Awards to Attend the Twelfth Asian Logic Conference
参加第十二届亚洲逻辑会议的旅行奖
  • 批准号:
    1135626
  • 财政年份:
    2011
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Travel Awards to Attend the First International Meeting of the American Mathematical Society and the Sociedad de Matematica de Chile
参加美国数学会和智利数学学会第一届国际会议的旅行奖励
  • 批准号:
    1048896
  • 财政年份:
    2010
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Vassar Noyce Teacher Scholarship Program
瓦萨·诺伊斯教师奖学金计划
  • 批准号:
    1035409
  • 财政年份:
    2010
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
Student Travel Awards to Attend Official Meetings and Sponsored Meetings of the ASL
参加 ASL 官方会议和赞助会议的学生旅行奖励
  • 批准号:
    0826668
  • 财政年份:
    2008
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
Finite and Infinite Model Theory and Applications
有限和无限模型理论及应用
  • 批准号:
    0801256
  • 财政年份:
    2008
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
Student Travel Awards to Attend the Annual and European Summer Meetings of the ASL
参加 ASL 年度会议和欧洲夏季会议的学生旅行奖
  • 批准号:
    0300055
  • 财政年份:
    2003
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
RUI: Research in O-minimality and Related Topics
RUI:O-极小性及相关主题的研究
  • 批准号:
    9704869
  • 财政年份:
    1997
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
  • 批准号:
    477924
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Salary Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了