Nonlinear partial differential equations and applications

非线性偏微分方程及其应用

基本信息

  • 批准号:
    0070569
  • 负责人:
  • 金额:
    $ 9.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

This is a proposal to develop general methods to study nonlinear, hyperbolic and parabolic/elliptic partial differential equations. More precisely using techniques from analysis, partial differential equations and probability, the PI plans to continue his program working in the following four general areas: A. Fully nonlinear stochastic partial differential equations of first-and second- order . B. Phase Transitions. C. Turbulent reaction-diffusion equations and combustion. D. First- and second-order fully nonlinear, degenerate, elliptic and parabolic equations. Most of the partial differential equations considered in this proposal arise as models in continuum and statistical physics. These models appear in a variety of topics ranging from material sciences and phase transitions (motion of fronts, mesoscopic and macroscopic scales, homogenization), in fluid flows (turbulent reaction-diffusion and combustion), and in stochastic analysis (interacting particle systems, flows in random environments and with random velocities, and stochastic control). The qualitative analysis of these models contributes to the better understanding of the actual physical problems, and provides, in many cases, the foundation for the development of efficient numerical algorithms.
这是开发一般方法来研究非线性,双曲线和抛物线/椭圆形偏微分方程的建议。 PI更精确地使用分析,部分微分方程方程和概率的技术,计划继续在以下四个一般领域中工作的程序:A。完全非线性随机的局部偏微分方程第一和第二阶。 B.相变。 C.湍流反应扩散方程和燃烧。 D.一阶和二阶非线性,退化,椭圆形和抛物线方程。该提案中考虑的大多数部分微分方程都是连续和统计物理学中的模型。 这些模型出现在各种主题中,包括物质科学和相变(前面的运动,介质和宏观尺度的运动,均质化),流体流动(湍流反应 - 扩散和燃烧)以及随机环境中的相互作用粒子系统,以及随机环境以及随机速度和速度对照,以及与随机的速度和Stochocative Controction和Stochchostic Controctions相互作用)。这些模型的定性分析有助于更好地理解实际的物理问题,并在许多情况下为开发有效的数值算法的基础提供了基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiotis Souganidis其他文献

In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol
  • 通讯作者:
    V. Vicol

Panagiotis Souganidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiotis Souganidis', 18)}}的其他基金

Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    2153822
  • 财政年份:
    2022
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    1900599
  • 财政年份:
    2019
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    1600129
  • 财政年份:
    2016
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    1266383
  • 财政年份:
    2013
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
RTG: Analysis and Differential Equations
RTG:分析和微分方程
  • 批准号:
    1246999
  • 财政年份:
    2013
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Analysis and Differential Equations
EMSW21-RTG:分析和微分方程
  • 批准号:
    1044944
  • 财政年份:
    2011
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0901802
  • 财政年份:
    2009
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0902164
  • 财政年份:
    2008
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0555826
  • 财政年份:
    2006
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
  • 批准号:
    0244787
  • 财政年份:
    2003
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant

相似国自然基金

基于自动微分的导数矩阵部分元素计算及其在非线性问题中的应用
  • 批准号:
    11101310
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
退化型和带奇异性非线性偏微分方程的微局部分析
  • 批准号:
    11171261
  • 批准年份:
    2011
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
微局部分析与中心流形理论在非线性偏微分方程中的应用
  • 批准号:
    10071024
  • 批准年份:
    2000
  • 资助金额:
    9.5 万元
  • 项目类别:
    面上项目
非线性微局部分析及其在偏微中的应用
  • 批准号:
    19071042
  • 批准年份:
    1990
  • 资助金额:
    1.0 万元
  • 项目类别:
    面上项目
补偿紧致,微局部分析及在非线性偏微分方程中的应用
  • 批准号:
    18770413
  • 批准年份:
    1987
  • 资助金额:
    0.9 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了