Proposal for funding for the Show-Me lectures
Show-Me 讲座的资助提案
基本信息
- 批准号:9977035
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Show-Me Lectures is a series ofmeetings in mathematical analysisorganized by the following four institutions:the University of Missouri-Columbia,the University of Missouri-St. Louis,the University of Missouri-Rolla, andWashington University in St. Louis.Several lectures have been delivered in previous Show-Me meetings on many topics of Analysis, such as analysis on groups, Banach space theory, differential equations, harmonic analysis, and probability theory. These lectures were presented by prominent mathematicians from all over the world. Attendance was not restricted to specialists from one field or another but was amimed at ageneral audience who wanted to learn more about another area and explore possible connections with theirs. Such connections have certainly appeared in many instances and in several occasions have led to fruitful discussions and collaborations. Many quality collaborations have been accomplished as a result of these meetings and several more havebeen initiated. It is our belief that these collaborationsbenefit not only the researchers involved but also strengthen and unify the field of mathematical analysis as an entity. Mathematical analysis can be viewed as the part ofmathematics whose primary roots lie in calculus. Its principal concepts are derivatives and integrals, which appear in a multitude of different settings.Mathematical analysis provides the foundation for applied mathematics, physics, astronomy and other areas, and is one of the more dynamic, viable, and applicable areas of mathematics today.Among the many subspecialties of analysis of importance to science and pure mathematics, one may cite the theoryof integral transforms, which plays a major role in tomography, the theory of wavelets, which in recent years has revolutionized the study of signal processing, and the theory of Banach spaces, in which mathematicians haveconstructed a richly endowed universe with infinitely many dimensions.Recent Showme seminars have included principal lectures on each of thesesubjects, and on numerous other topics in analysis, by distinguishedmathematicians, some from various of our four universities in Missouriand some from further afield. The primary objective of the Showme meetings is to stimulate, promote, and enhance interaction between the different groups of mathematical analysis.In addition to the stimulating lectures, these meetings are providing splendid opportunites for the analysts in Missouri and nearby states to learn about each other's work and to initiatecollaborations. We anticipate many more fruitful seminars in times tocome.
Show-Me讲座是由以下四个机构组成的数学分析的一系列课程:密苏里州密苏里州大学,密苏里大学 - 密苏里大学。路易斯·路易斯(Louis),密苏里 - 罗拉大学(University of Missouri-Rolla),圣路易斯(St. Louis)的华盛顿大学。这些讲座是由来自世界各地的著名数学家提出的。出勤率不仅限于一个领域或另一个领域的专家,而是对想要更多有关另一个领域并探索可能与他们的联系的习惯观众感到不安。在许多情况下,这种联系肯定出现了,并且在多次中导致了富有成果的讨论和合作。由于这些会议,已经完成了许多质量的合作,并开始了几次Baybeen。我们相信,这些合作不仅是研究人员,而且还加强并统一了数学分析领域作为实体。数学分析可以看作是其主要根源在微积分中的电学的一部分。 它的主要概念是衍生物和积分,它们出现在多种不同的环境中。数学分析为应用数学,物理,物理,天文学和其他领域提供了基础,并且是当今数学的更具动态,可行和适用领域之一,当今的许多数学领域。断层扫描,小波理论近年来彻底改变了信号处理的研究以及Banach空间的理论,在该理论中,数学家对无限多个维度的富有endered的宇宙进行了许多维度,这些节目研讨会包括在各种户外的户外活动,以及各种户外的户外活动,包括我们的其他户外活动,以及我们的其他户外活动。从更远的地方传了一些。 Showme会议的主要目的是刺激,促进和增强不同数学分析组之间的相互作用。除了刺激的讲座外,这些会议为密苏里州和附近各州的分析师提供了出色的机会,以了解彼此的工作和启动。我们预计有时会有更多富有成果的研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loukas Grafakos其他文献
Singular Integrals of Convolution Type
- DOI:
10.1007/978-1-4939-1194-3_5 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Loukas Grafakos - 通讯作者:
Loukas Grafakos
Multilinear generalized Radon transforms and point configurations
多线性广义 Radon 变换和点配置
- DOI:
10.1515/forum-2013-0128 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Loukas Grafakos;A. Greenleaf;A. Iosevich;E. Palsson - 通讯作者:
E. Palsson
Smoothness and Function Spaces
平滑度和功能空间
- DOI:
10.1007/978-1-4939-1230-8_1 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Loukas Grafakos - 通讯作者:
Loukas Grafakos
Fractional Differentiation: Leibniz Meets Hölder
分数微分:莱布尼茨遇见霍尔德
- DOI:
10.1007/978-3-319-54711-4_2 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Loukas Grafakos - 通讯作者:
Loukas Grafakos
Perturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators
H∞-微积分的摄动和插值定理及其在微分算子中的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
F. Gesztesy;G. Godefroy;Loukas Grafakos;I. Verbitsky - 通讯作者:
I. Verbitsky
Loukas Grafakos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loukas Grafakos', 18)}}的其他基金
Fourier Analysis: Space, Frequency, and Direction
傅里叶分析:空间、频率和方向
- 批准号:
0900946 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Fourier Analysis: Old Themes, New Perspectives
傅里叶分析:旧主题,新视角
- 批准号:
0400387 - 财政年份:2004
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Topics in Linear and Multilinear Harmonic Analysis
线性和多线性谐波分析主题
- 批准号:
0099881 - 财政年份:2001
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Classical Harmonic Analysis and Applications to Partial Differential Equations
数学科学:经典调和分析及其在偏微分方程中的应用研究
- 批准号:
9623120 - 财政年份:1996
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
相似国自然基金
城乡间人口和资金双向流动影响农村相对贫困的效果、机制及政策研究
- 批准号:72303216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
供给冲击与资金约束下的运营柔性策略研究
- 批准号:72271045
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
供应链网络中心度与企业营运资金管理行为研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
资金流量视角下的金融与实体经济关系研究——资金可计算一般均衡模型构建及政策分析
- 批准号:72204263
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑资金约束和制造商支持的新技术供应商融资与创新策略研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Increasing farming competitiveness, profitability and resilience by removal of greenhouse gases (R-LEAF): follow-on funding
通过消除温室气体提高农业竞争力、盈利能力和复原力 (R-LEAF):后续资金
- 批准号:
10090632 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Collaborative R&D
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别: