Scattering Theory

散射理论

基本信息

  • 批准号:
    9970614
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9970614The main interest of the PI is the study of resonances and of the wave equation. Resonances which are described by complex numbers constitute a replacement of eigenvalues for problems on noncompact domains and they appear naturally in many branches of mathematics and physics. The real part of a resonance describes the energy (or frequency) of a state and the imaginary part its rate of decay. This constitutes a more realistic model than an eigenvalue which provides energy only and assumes eternal existence of a state. A new wealth of phenomena appears and our understanding is still rather fragmentary. Linear and non-linear wave equations describe many physical phenomena often closely related to resonances. In the contexts of propagation, spectral and scattering theories the PI will investigate them further. The specific directions include: understanding of the dynamical definition of resonances and their appearance in the long time behaviour of solutions of the wave and Schroedinger equations, obtaining lower bounds on the number of resonances in terms of dynamical quantities, developing the theory of the FBI transformation on non-compact manifolds with applications to resonances and to the study of propagation for Schroedinger equation in mind, estimates of resonances at low energies, understanding of "quantum chaos" in scattering theory.For a broad range of phenomena, a physical state can be described by twoparameters: its rest energy and its rate of decay. This information is elegantly encoded in a complex number, whose real part is the energy and the imaginary part, the rate of decay. This description of a state, called a resonance, appears naturally in mathematics, physics and chemistry: from the Riemann zeta function to experimental scattering data.The PI studies general principles in the distribution of resonances,their relation to wave propagation, and their behaviour in various specificsituations. He is also interested in "quantum chaos", the study of which raises questions in many areas: from number theory to mezoscopic systems of physics. The main issues are universal relations between the classical and quantum views of the world -- one of the yet unresolved central themes of the 20th century.
DMS-9970614 PI的主要兴趣是谐振和波方程的研究。通过复数描述的共振构成了在非伴随域上问题的特征值的替代,并且它们在数学和物理学的许多分支中自然而然地出现。共振的实际部分描述了状态的能量(或频率)以及其衰变速率的想象部分。与仅提供能量并假定状态永恒存在的特征值相比,这是一个更现实的模型。出现了新的现象,我们的理解仍然相当分散。线性和非线性波方程描述了许多物理现象通常与共振密切相关。在传播,光谱和散射理论的背景下,PI将进一步研究它们。 The specific directions include: understanding of the dynamical definition of resonances and their appearance in the long time behaviour of solutions of the wave and Schroedinger equations, obtaining lower bounds on the number of resonances in terms of dynamical quantities, developing the theory of the FBI transformation on non-compact manifolds with applications to resonances and to the study of propagation for Schroedinger equation in mind, estimates of resonances at low energies, understanding of "quantum混乱”在散射理论中。对于广泛的现象,可以通过Twoparameters来描述物理状态:其休息能和衰变速率。这些信息是在一个复杂数字中优雅编码的,其实际部分是能量和虚构部分,即衰减的速率。对一个称为共振的状态的描述在数学,物理和化学中自然出现:从Riemann Zeta函数到实验散射数据。PI研究了共振分布的一般原理,它们与波传播的关系以及它们在各种细节中的行为。他还对“量子混乱”感兴趣,该研究在许多领域提出了问题:从数字理论到肠镜的物理系统。主要问题是世界的古典和量子观点之间的普遍关系 - 20世纪尚未解决的中央主题之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maciej Zworski其他文献

Fractal Weyl Laws in Discrete Models of Chaotic Scattering Stéphane Nonnenmacher and Maciej Zworski
混沌散射离散模型中的分形 Weyl 定律 Stéphane Nonnenmacher 和 Maciej Zworski
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maciej Zworski
  • 通讯作者:
    Maciej Zworski

Maciej Zworski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maciej Zworski', 18)}}的其他基金

Spectral Theory and Microlocal Analysis
谱理论和微局域分析
  • 批准号:
    1952939
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference: Microlocal Analysis and Spectral Theory
会议:微局域分析与谱理论
  • 批准号:
    1901929
  • 财政年份:
    2019
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1500852
  • 财政年份:
    2015
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
"Weyl Law at 100"
《韦尔定律100岁》
  • 批准号:
    1216660
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1201417
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Symplectic and Poisson Geometry in interaction with Algebra, Analysis and Topology
辛几何和泊松几何与代数、分析和拓扑的相互作用
  • 批准号:
    0965738
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Scattering Theory
散射理论
  • 批准号:
    0654436
  • 财政年份:
    2007
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Semi-Classical Analysis
半经典分析
  • 批准号:
    0200732
  • 财政年份:
    2002
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Many-Body Scattering
多体散射
  • 批准号:
    9970607
  • 财政年份:
    1999
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Non-Linear Scattering
数学科学:线性和非线性散射
  • 批准号:
    9505530
  • 财政年份:
    1995
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于反向散射的主被动互惠安全理论与方法研究
  • 批准号:
    62302185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字特征模理论及其在宽频带中辐射散射一体化的调控研究
  • 批准号:
    62371355
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非谐效应对笼目材料的超导电性及电荷密度波序影响的理论计算及中子散射研究
  • 批准号:
    12304095
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
含损耗介质的复杂结构辐射与散射问题特征模理论研究
  • 批准号:
    62301071
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多重散射理论的地铁振动不确定性研究及圆柱型超表面减振技术
  • 批准号:
    52378376
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
  • 批准号:
    2316701
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Fellowship Award
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了