Scattering Theory

散射理论

基本信息

  • 批准号:
    9970614
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9970614The main interest of the PI is the study of resonances and of the wave equation. Resonances which are described by complex numbers constitute a replacement of eigenvalues for problems on noncompact domains and they appear naturally in many branches of mathematics and physics. The real part of a resonance describes the energy (or frequency) of a state and the imaginary part its rate of decay. This constitutes a more realistic model than an eigenvalue which provides energy only and assumes eternal existence of a state. A new wealth of phenomena appears and our understanding is still rather fragmentary. Linear and non-linear wave equations describe many physical phenomena often closely related to resonances. In the contexts of propagation, spectral and scattering theories the PI will investigate them further. The specific directions include: understanding of the dynamical definition of resonances and their appearance in the long time behaviour of solutions of the wave and Schroedinger equations, obtaining lower bounds on the number of resonances in terms of dynamical quantities, developing the theory of the FBI transformation on non-compact manifolds with applications to resonances and to the study of propagation for Schroedinger equation in mind, estimates of resonances at low energies, understanding of "quantum chaos" in scattering theory.For a broad range of phenomena, a physical state can be described by twoparameters: its rest energy and its rate of decay. This information is elegantly encoded in a complex number, whose real part is the energy and the imaginary part, the rate of decay. This description of a state, called a resonance, appears naturally in mathematics, physics and chemistry: from the Riemann zeta function to experimental scattering data.The PI studies general principles in the distribution of resonances,their relation to wave propagation, and their behaviour in various specificsituations. He is also interested in "quantum chaos", the study of which raises questions in many areas: from number theory to mezoscopic systems of physics. The main issues are universal relations between the classical and quantum views of the world -- one of the yet unresolved central themes of the 20th century.
DMS-9970614 PI 的主要兴趣是研究共振和波动方程。由复数描述的共振构成了非紧域问题的特征值的替代,并且它们自然地出现在数学和物理学的许多分支中。共振的实部描述了状态的能量(或频率),虚部描述了其衰减率。这构成了比仅提供能量并假设状态永恒存在的特征值更现实的模型。大量新的现象出现,但我们的理解仍然相当片断。线性和非线性波动方程描述了许多通常与共振密切相关的物理现象。在传播、光谱和散射理论的背景下,PI 将进一步研究它们。具体方向包括:理解共振的动力学定义及其在波和薛定谔方程解的长期行为中的出现,获得动力学量方面共振数量的下界,发展FBI变换理论非紧流形及其在共振和薛定谔方程传播研究中的应用、低能量共振的估计、散射理论中“量子混沌”的理解。现象中,物理状态可以用两个参数来描述:它的静止能量和它的衰变率。这些信息被优雅地编码为复数,其实部是能量,虚部是衰减率。这种对状态的描述(称为共振)自然出现在数学、物理和化学中:从黎曼 zeta 函数到实验散射数据。PI 研究共振分布的一般原理、它们与波传播的关系以及它们在波传播中的行为。各种具体情况。他还对“量子混沌”感兴趣,其研究提出了许多领域的问题:从数论到物理介观系统。主要问题是经典世界观和量子世界观之间的普遍关系——这是 20 世纪尚未解决的中心主题之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maciej Zworski其他文献

Fractal Weyl Laws in Discrete Models of Chaotic Scattering Stéphane Nonnenmacher and Maciej Zworski
混沌散射离散模型中的分形 Weyl 定律 Stéphane Nonnenmacher 和 Maciej Zworski
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maciej Zworski
  • 通讯作者:
    Maciej Zworski

Maciej Zworski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maciej Zworski', 18)}}的其他基金

Spectral Theory and Microlocal Analysis
谱理论和微局域分析
  • 批准号:
    1952939
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference: Microlocal Analysis and Spectral Theory
会议:微局域分析与谱理论
  • 批准号:
    1901929
  • 财政年份:
    2019
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1500852
  • 财政年份:
    2015
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
"Weyl Law at 100"
《韦尔定律100岁》
  • 批准号:
    1216660
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1201417
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Symplectic and Poisson Geometry in interaction with Algebra, Analysis and Topology
辛几何和泊松几何与代数、分析和拓扑的相互作用
  • 批准号:
    0965738
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Scattering Theory
散射理论
  • 批准号:
    0654436
  • 财政年份:
    2007
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Semi-Classical Analysis
半经典分析
  • 批准号:
    0200732
  • 财政年份:
    2002
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Many-Body Scattering
多体散射
  • 批准号:
    9970607
  • 财政年份:
    1999
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Non-Linear Scattering
数学科学:线性和非线性散射
  • 批准号:
    9505530
  • 财政年份:
    1995
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于反向散射的主被动互惠安全理论与方法研究
  • 批准号:
    62302185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
  • 批准号:
    12371422
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非线性高阶逆散射理论
  • 批准号:
    42374149
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
逆散射理论中传输特征值问题的虚拟元方法研究
  • 批准号:
    12301532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
含损耗介质的复杂结构辐射与散射问题特征模理论研究
  • 批准号:
    62301071
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
  • 批准号:
    2316701
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Fellowship Award
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了