Semi-Classical Analysis

半经典分析

基本信息

  • 批准号:
    0200732
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2007-09-30
  • 项目状态:
    已结题

项目摘要

PI: Maciej R. Zworski, UC-Berkeley. DMS-0200732Abstract:The main interest of the PI is the study of quantum mechanics from themathematical point of view, and of its many manifestations in the theoryof partial differential equations and geometry. Specific current interests are the classical/quantum correspondence, resonances, geometric scattering, andnon-hermitian quantum mechanics. More precisely, the PI is interested in resonances, which are mathematical objects modeling states which have certain frequencies of oscillations (or rest energies) and rates of decay, such as unstable molecules or classical system responding to resonant forcing terms. Despite a long tradition and a lot of recent progress our understanding is still very limited. Current experimentaland numerical advances provide new stimuli for our studies. Another interest of the PI isnon-hermitian quantum mechanics, which deals with systems in which energy is not conserved.That is almost always present when we localize a part of a system and the global conservation of energy disapears. In a subtle way resonances already fall into this category of phenomena. The mathematical problems present here are the stability of eigenvalues and measuring the size of the resolvent of non-self-adjoint operators. That leads to the study of ``pseudospectra'' which is then related to many interesting phenomena in PDEs. Finally, the PI's interest involves mathematical scattering. It replaces spectral theory for problems on non-compact domains, and in physics almost all the data comes from scattering experiments. Many new things are constantly discovered now, ranging from scattering on locally symmetric spaces to problemsrelated to conformal field theory.Many of the phenomena discussed in this proposal are in fact more general: for instance, electromagnetic scattering can be used to model quantum scattering, and its understandingcan benefit from the development of the classical/quantum correspondence.The PI's work focuses on the search for general mathematical principles,and the detailed study of specific examples is motivated by that.
PI:Maciej R. Zworski,加州大学伯克利分校。 DMS-0200732摘要:PI的主要兴趣是从数学角度研究量子力学及其在偏微分方程和几何理论中的多种表现形式。当前的具体兴趣是经典/量子对应、共振、几何散射和非厄米量子力学。更准确地说,PI 对共振感兴趣,共振是对具有一定振荡频率(或静止能量)和衰减率的状态进行建模的数学对象,例如不稳定分子或响应共振强迫项的经典系统。尽管有着悠久的传统并且最近取得了很多进展,但我们的理解仍然非常有限。当前的实验和数值进展为我们的研究提供了新的刺激。 PI 的另一个兴趣是非厄米量子力学,它涉及能量不守恒的系统。当我们局部化系统的一部分并且全局能量守恒消失时,这种情况几乎总是存在。共振以一种微妙的方式已经属于这一类现象。这里存在的数学问题是特征值的稳定性和测量非自伴算子解的大小。这导致了对“伪谱”的研究,它与偏微分方程中的许多有趣的现象相关。最后,PI 的兴趣涉及数学散射。它取代了谱理论来解决非紧域问题,并且在物理学中几乎所有数据都来自散射实验。现在不断发现许多新事物,从局部对称空间上的散射到共形场论相关的问题。这个提案中讨论的许多现象实际上更普遍:例如,电磁散射可以用来模拟量子散射,并且它的理解可以受益于经典/量子对应的发展。PI的工作重点是寻找一般数学原理,并由此激发对具体例子的详细研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maciej Zworski其他文献

Fractal Weyl Laws in Discrete Models of Chaotic Scattering Stéphane Nonnenmacher and Maciej Zworski
混沌散射离散模型中的分形 Weyl 定律 Stéphane Nonnenmacher 和 Maciej Zworski
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maciej Zworski
  • 通讯作者:
    Maciej Zworski

Maciej Zworski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maciej Zworski', 18)}}的其他基金

Spectral Theory and Microlocal Analysis
谱理论和微局域分析
  • 批准号:
    1952939
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Microlocal Analysis and Spectral Theory
会议:微局域分析与谱理论
  • 批准号:
    1901929
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1500852
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
"Weyl Law at 100"
《韦尔定律100岁》
  • 批准号:
    1216660
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1201417
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Symplectic and Poisson Geometry in interaction with Algebra, Analysis and Topology
辛几何和泊松几何与代数、分析和拓扑的相互作用
  • 批准号:
    0965738
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scattering Theory
散射理论
  • 批准号:
    0654436
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Many-Body Scattering
多体散射
  • 批准号:
    9970607
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scattering Theory
散射理论
  • 批准号:
    9970614
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Linear and Non-Linear Scattering
数学科学:线性和非线性散射
  • 批准号:
    9505530
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于根际氮循环微生物解析内蒙古典型草原植物的养分利用策略调控机制
  • 批准号:
    32371722
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于历史水情景模型的江南古典园林水景适应度评估及其活化利用
  • 批准号:
    52308050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同家畜放牧对内蒙古典型草原生态系统多功能性的影响机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内蒙古典型草原土壤有机碳稳定性对氮沉降的响应:十七年连续野外实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
氮沉降的遗留效应对内蒙古典型草原根系动态的影响
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Semiclassical analysis of Schroedinger equations
薛定谔方程的半经典分析
  • 批准号:
    21K03303
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative spectral analysis of quantum field theory by stochastic analysis and semi-classical approximation
通过随机分析和半经典近似对量子场论进行非微扰谱分析
  • 批准号:
    20H01808
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric analysis for unitary transition operators
酉转移算子的几何分析
  • 批准号:
    18K03267
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiclassical Analysis of Schroedinger equations
薛定谔方程的半经典分析
  • 批准号:
    18K03384
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ionization dynamics in two-color laser fields - "phase-of-the-phase" spectroscopy and semi-classical trajectory analysis
双色激光场中的电离动力学——“相中相”光谱和半经典轨迹分析
  • 批准号:
    327470566
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了