Quantum Theory of Strongly Interacting Electrons

强相互作用电子的量子理论

基本信息

  • 批准号:
    9808685
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-12-31
  • 项目状态:
    已结题

项目摘要

9808685KivelsonThis award supports research on new approaches to strongly interacting many-body quantum systems with the aim of elucidating the electronic properties of materials such as the high temperature superconductors, related perovskite ruthenates and nickelates, Bechgaard salts, and other organic superconductors. The PI intends to continue a coordinated study of the properties of doped Mott insulators. Specifically it is intended to investigate the properties of conducting stripe ordered, stripe liquid, and stripe liquid crystalline phases, the mechanism of high temperature superconductivity in these phases, an most ambitiously, to study the consequences of topological doping for the anomalous normal state of "bad metals." The PI plans an approach that includes controlled approximate solutions of microscopic models as well as developing more phenomenological theory with the aim of understanding the implications of experimental observations. Specific plans include: (1) studies of solvable electronic models which exhibit stripe phases, (2) an investigation of the consequences of fluctuations of the phase of the order parameter on the properties of superconductors with low superfluid densities, (3) studies to establish the conditions for the stability of possible liquid crystalline and isotropic liquid stripe phases, and to elucidate the electronic properties of these phases. %%% This proposal involves new approaches to the study of electronic properties of materials with strongly interacting electrons; a challenging problem at the forefront of condensed matter theory. The role of `striped phases' and superconducting fluctuations in high temperature superconductors are a focus of this work. ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Kivelson其他文献

Steven Kivelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Kivelson', 18)}}的其他基金

NSF-BSF: Theory of Quantum Materials
NSF-BSF:量子材料理论
  • 批准号:
    2310312
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
  • 批准号:
    2409357
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
  • 批准号:
    2000987
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Theory of order and fluctuations in quantum materials
量子材料的有序与涨落理论
  • 批准号:
    1608055
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Emergent Behavior of Microscopic Model Systems
微观模型系统的涌现行为
  • 批准号:
    1265593
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Emergent Properties of Highly Correlated Electronic Systems
高度相关电子系统的涌现特性
  • 批准号:
    0758356
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theory of Highly Correlated Electronic Systems
高度相关电子系统理论
  • 批准号:
    0531196
  • 财政年份:
    2004
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theory of Highly Correlated Electronic Systems
高度相关电子系统理论
  • 批准号:
    0421960
  • 财政年份:
    2004
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theory of Locally Crystalline Liquids
局域结晶液体理论
  • 批准号:
    0110329
  • 财政年份:
    2001
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Low Energy Implications of Strong Electronic Correlations
强电子相关性的低能量影响
  • 批准号:
    9312606
  • 财政年份:
    1993
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

足式机器人虚实融合可微分仿真理论与应用研究
  • 批准号:
    62373242
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
脑组织白质的粘超弹性损伤本构模型理论及其应用研究
  • 批准号:
    12302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
极地态势感知集群系统最优动态部署理论与关键技术
  • 批准号:
    52331012
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非刚性折叠超材料的设计理论和力学性能研究
  • 批准号:
    52373293
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Resurgence theory and its application to strongly coupled physics
复兴理论及其在强耦合物理中的应用
  • 批准号:
    21K03558
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Resurgence theory and its application to strongly coupled physics
复兴理论及其在强耦合物理中的应用
  • 批准号:
    21K03558
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development the coupled cluster theory for strongly correlated systems and applications for chemical reactions
发展强相关系统的耦合簇理论和化学反应的应用
  • 批准号:
    21K04978
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalization of open quantum theory for strongly coupled vibronic systems and application to spectroscopies
强耦合电子振动系统开放量子理论的推广及其在光谱学中的应用
  • 批准号:
    20K22520
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
2019 Theory Winter School on Strongly Correlated and Quantum Spin Liquid Physics, Weyl and Topological Physics, and New Computational Techniques.
2019 年理论冬季学校,主题为强相关和量子自旋液体物理、韦尔和拓扑物理以及新计算技术。
  • 批准号:
    1915312
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了