Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach

数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法

基本信息

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Tovbis其他文献

Alexander Tovbis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Tovbis', 18)}}的其他基金

Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
  • 批准号:
    2009647
  • 财政年份:
    2020
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Asymptotic Methods for Singularly Perturbed Nonlinear Systems
奇异摄动非线性系统的渐近方法
  • 批准号:
    0508779
  • 财政年份:
    2005
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Asymptotic Methods for Singularity Perturbed Nonlinear Systems
奇异摄动非线性系统的渐近方法
  • 批准号:
    0207201
  • 财政年份:
    2002
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9500644
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant

相似国自然基金

国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    52311540127
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    22311540123
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
从电针调节肌-骨内感知平衡机制探索肌骨同治理论科学内涵
  • 批准号:
    82360941
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
  • 批准号:
    52302276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
  • 批准号:
    9623216
  • 财政年份:
    1996
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Patterns, Chaos, and Turbulence in Couette-Taylor Flow--Connections to Other Problems in Nonlinear Dynamics; August 7-10, 1995; Boulder, Colorado
数学科学:库埃特-泰勒流中的模式、混沌和湍流——与非线性动力学中其他问题的联系;
  • 批准号:
    9520111
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Modeling in Continuous Time, Delayed Autoregressive Processes, and Chaos
数学科学:连续时间非线性建模、延迟自回归过程和混沌
  • 批准号:
    9504798
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Classical Analysis, Number Theory and Quantum Chaos
数学科学:经典分析、数论和量子混沌
  • 批准号:
    9424368
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9500644
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了