Nonlinear Waves and Stability in Partial Differential Equations

非线性波和偏微分方程的稳定性

基本信息

  • 批准号:
    9704924
  • 负责人:
  • 金额:
    $ 12.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9704924 Pego Nonlinearity helps to create wave phenomena in a variety of important systems of partial differential equations that arise in science and engineering. The focus of the proposed research is on developing and improving methods for analyzing the stability of waves in several systems of physical interest. These include 1) Solitary waves in nonlinear dispersive media, including lattice dynamics and water waves; 2) A recently discovered class of localized nonradial solutions of nonlinear Schrodinger equations in 2+1 dimensions; and 3) Internal waves in fluids near the liquid-vapor critical point. The methods under development involve improving the use of: a) Evans functions to analyze eigenvalue problems in two dimensions with symmetries; b) singular perturbation theory for resolvent operators, to study how stability results for integrable systems persist in nonintegrable systems for lattice dynamics and water waves; c) infinite-dimensional center manifold theory in ill-posed systems, to study the existence of traveling water waves in three dimensions; d) zero-Mach-number asymptotic analysis of low-velocity flows, to study hydrodynamic phenomena near the critical point, specifically: damping rates of internal waves about a strongly stratified equilibrium, and possible capillary effects in one-phase flows of near-critical fluids. The general goal of the first part of this research is to understand how "robust" are nonlinear wave phenomena. Nonlinear waves in rare, so-called "integrable" systems can be very well understood due to what seems miraculous -- they can be solved in closed form. But most realistic systems are not integrable, so one needs to know what phenomena depend on integrability and what do not. An important infrastructural technology where nonlinear waves are important and are not completely understood is long-distance communication via optical fiber. The second part of the work was motivated by physics experiments carried out on the spa ce shuttle; also, the use of supercritical fluids in materials processing is extensive and growing. The behavior of flows of such fluids near the critical point is unusual and little understood, and this has led to costly failures in experimental design in the past. Fundamental investigations are needed to build the knowledge base about such flows that can serve as the foundation for the development of applications.
9704924 Pego 非线性有助于在科学和工程中出现的各种重要的偏微分方程组中创建波动现象。拟议研究的重点是开发和改进分析几个物理感兴趣的系统中波浪稳定性的方法。其中包括 1) 非线性色散介质中的孤立波,包括晶格动力学和水波; 2)最近发现的一类2+1维非线性薛定谔方程的局域非径向解; 3) 液体-蒸汽临界点附近流体中的内波。 正在开发的方法包括改进以下方法的使用: a) 埃文斯函数,用于分析具有对称性的二维特征值问题; b) 求解算子的奇异摄动理论,研究可积系统的稳定性结果如何在晶格动力学和水波的不可积系统中持续存在; c) 病态系统中的无限维中心流形理论,研究三维行进水波的存在性; d) 低速流的零马赫数渐近分析,研究临界点附近的流体动力学现象,具体来说:强分层平衡附近的内波阻尼率,以及近临界单相流中可能的毛细管效应液体。 本研究第一部分的总体目标是了解非线性波现象的“鲁棒性”。罕见的所谓“可积”系统中的非线性波可以很好地理解,因为看起来很神奇——它们可以以封闭形式求解。但大多数现实系统都是不可积的,因此我们需要知道哪些现象取决于可积性,哪些现象不依赖于可积性。非线性波很重要但尚未被完全理解的一项重要基础设施技术是通过光纤进行的长距离通信。这项工作的第二部分是受到航天飞机上进行的物理实验的启发。此外,超临界流体在材料加工中的应用正在广泛且不断增长。这种流体在临界点附近的流动行为是不寻常的,人们对此知之甚少,这在过去导致了实验设计中代价高昂的失败。 需要进行基础研究来建立有关此类流程的知识库,以作为应用程序开发的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Pego其他文献

Robert Pego的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Pego', 18)}}的其他基金

Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
  • 批准号:
    2106534
  • 财政年份:
    2021
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlocal Models of Aggregation and Dispersion
合作研究:聚集和分散的非局部模型
  • 批准号:
    1812609
  • 财政年份:
    2018
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Kinetic Models of Aggregation and Dispersion
合作研究:聚集和分散的动力学模型
  • 批准号:
    1515400
  • 财政年份:
    2015
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Dynamics and stability in models of clustering and waves
聚类和波模型中的动力学和稳定性
  • 批准号:
    1211161
  • 财政年份:
    2012
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Scaling dynamics and stability in extended physical systems
扩展物理系统中的扩展动力学和稳定性
  • 批准号:
    0905723
  • 财政年份:
    2009
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Dynamic Scaling, Coarsening and Stability in Physical Systems
物理系统中的动态缩放、粗化和稳定性
  • 批准号:
    0652558
  • 财政年份:
    2006
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Scaling and infinite divisibility in models of coarsening and other dynamic selection problems
合作研究:粗化和其他动态选择问题模型中的缩放和无限可分性
  • 批准号:
    0604420
  • 财政年份:
    2006
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Continuing Grant
Dynamic Scaling, Coarsening and Stability in Physical Systems
物理系统中的动态缩放、粗化和稳定性
  • 批准号:
    0305985
  • 财政年份:
    2003
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics in Models of Wave Propagation and Domain Coarsening
波传播和域粗化模型中的非线性动力学
  • 批准号:
    0072609
  • 财政年份:
    2000
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Waves and Stability in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程中的波和稳定性
  • 批准号:
    9403871
  • 财政年份:
    1994
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

深远海仿生柔性波浪能移动电源动力调谐机理与能量稳定控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
波浪下软黏土海床土-泥转换机制及其对管道稳定性影响
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
波致非均匀海床累积响应及其与单桩耦合动力机制研究
  • 批准号:
    51909076
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
极限波浪的演化机理及对LNG船运动影响的研究
  • 批准号:
    51809244
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
吸力桶与圆沉箱整体预制式新型离岸深水码头的稳定性研究
  • 批准号:
    51879187
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
  • 批准号:
    2204788
  • 财政年份:
    2021
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106157
  • 财政年份:
    2021
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106203
  • 财政年份:
    2021
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
  • 批准号:
    21K03315
  • 财政年份:
    2021
  • 资助金额:
    $ 12.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了