Nonlinear Waves and Stability in Partial Differential Equations
非线性波和偏微分方程的稳定性
基本信息
- 批准号:9704924
- 负责人:
- 金额:$ 12.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704924 Pego Nonlinearity helps to create wave phenomena in a variety of important systems of partial differential equations that arise in science and engineering. The focus of the proposed research is on developing and improving methods for analyzing the stability of waves in several systems of physical interest. These include 1) Solitary waves in nonlinear dispersive media, including lattice dynamics and water waves; 2) A recently discovered class of localized nonradial solutions of nonlinear Schrodinger equations in 2+1 dimensions; and 3) Internal waves in fluids near the liquid-vapor critical point. The methods under development involve improving the use of: a) Evans functions to analyze eigenvalue problems in two dimensions with symmetries; b) singular perturbation theory for resolvent operators, to study how stability results for integrable systems persist in nonintegrable systems for lattice dynamics and water waves; c) infinite-dimensional center manifold theory in ill-posed systems, to study the existence of traveling water waves in three dimensions; d) zero-Mach-number asymptotic analysis of low-velocity flows, to study hydrodynamic phenomena near the critical point, specifically: damping rates of internal waves about a strongly stratified equilibrium, and possible capillary effects in one-phase flows of near-critical fluids. The general goal of the first part of this research is to understand how "robust" are nonlinear wave phenomena. Nonlinear waves in rare, so-called "integrable" systems can be very well understood due to what seems miraculous -- they can be solved in closed form. But most realistic systems are not integrable, so one needs to know what phenomena depend on integrability and what do not. An important infrastructural technology where nonlinear waves are important and are not completely understood is long-distance communication via optical fiber. The second part of the work was motivated by physics experiments carried out on the spa ce shuttle; also, the use of supercritical fluids in materials processing is extensive and growing. The behavior of flows of such fluids near the critical point is unusual and little understood, and this has led to costly failures in experimental design in the past. Fundamental investigations are needed to build the knowledge base about such flows that can serve as the foundation for the development of applications.
9704924 PEGO非线性有助于在科学和工程中出现的各种重要的部分微分方程系统中创建波浪现象。拟议的研究的重点是开发和改进方法,用于分析几种物理感兴趣系统中波的稳定性。其中包括1)非线性分散介质中的孤立波,包括晶格动力学和水波; 2)在2+1维中,最近发现的非线性Schrodinger方程的局部非放射溶液; 3)液体震荡临界点附近的流体中的内波。 所开发的方法涉及改进以下方法:a)Evans函数在与对称性的两个维度中分析特征值问题; b)分析运算符的奇异扰动理论,以研究集成系统的稳定性如何持续存在于晶格动力学和水波的不可整合系统中; c)在不足的系统中,无限维中心歧管理论,以研究三个维度的行进水波的存在; d)对低速流量的零射线渐近分析,以研究临界点附近的流体动力现象,特别是:在强烈分层平衡的内部波的阻尼速率,以及在近临界流体的单相流中可能的毛细管作用。 这项研究的第一部分的一般目标是了解非线性波现象的“健壮”是如何的。由于看起来奇迹般的奇迹,可以很好地理解稀有,所谓的“可集成”系统中的非线性波 - 可以以封闭形式解决。但是,大多数现实的系统都不可集成,因此需要知道哪些现象取决于整合性以及什么不取决于。非线性波很重要并且尚不完全了解的重要基础设施技术是通过光纤进行长途通信。工作的第二部分是由在Spa Ce Shuttle上进行的物理实验激励的。同样,在材料加工中使用超临界流体是广泛且增长的。临界点附近的这种流体流动的行为是不寻常的,几乎没有理解,这导致了过去实验设计的昂贵故障。 需要进行基本的调查来建立有关可以作为应用程序开发的基础的知识基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Pego其他文献
Robert Pego的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Pego', 18)}}的其他基金
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:
2106534 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: Nonlocal Models of Aggregation and Dispersion
合作研究:聚集和分散的非局部模型
- 批准号:
1812609 - 财政年份:2018
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: Kinetic Models of Aggregation and Dispersion
合作研究:聚集和分散的动力学模型
- 批准号:
1515400 - 财政年份:2015
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Dynamics and stability in models of clustering and waves
聚类和波模型中的动力学和稳定性
- 批准号:
1211161 - 财政年份:2012
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Scaling dynamics and stability in extended physical systems
扩展物理系统中的扩展动力学和稳定性
- 批准号:
0905723 - 财政年份:2009
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Dynamic Scaling, Coarsening and Stability in Physical Systems
物理系统中的动态缩放、粗化和稳定性
- 批准号:
0652558 - 财政年份:2006
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: Scaling and infinite divisibility in models of coarsening and other dynamic selection problems
合作研究:粗化和其他动态选择问题模型中的缩放和无限可分性
- 批准号:
0604420 - 财政年份:2006
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Dynamic Scaling, Coarsening and Stability in Physical Systems
物理系统中的动态缩放、粗化和稳定性
- 批准号:
0305985 - 财政年份:2003
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Nonlinear Dynamics in Models of Wave Propagation and Domain Coarsening
波传播和域粗化模型中的非线性动力学
- 批准号:
0072609 - 财政年份:2000
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Waves and Stability in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程中的波和稳定性
- 批准号:
9403871 - 财政年份:1994
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
相似国自然基金
深远海仿生柔性波浪能移动电源动力调谐机理与能量稳定控制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
波浪下软黏土海床土-泥转换机制及其对管道稳定性影响
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
波致非均匀海床累积响应及其与单桩耦合动力机制研究
- 批准号:51909076
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
南海吹填岛礁护岸防波堤在台风天气中极端波浪冲击下的稳定性研究
- 批准号:51879257
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
极限波浪的演化机理及对LNG船运动影响的研究
- 批准号:51809244
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
- 批准号:
23K03174 - 财政年份:2023
- 资助金额:
$ 12.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
2204788 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Continuing Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
- 批准号:
2106157 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
- 批准号:
2106203 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
- 批准号:
21K03315 - 财政年份:2021
- 资助金额:
$ 12.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)