Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
基本信息
- 批准号:21K03315
- 负责人:
- 金额:$ 2.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
研究の目的は、非線形シュレディンガー方程式や非線形クライン・ゴルドン方程式など非線形分散波動方程式の孤立波解の安定性に関する研究を推進することで ある。特に、パラメータによって孤立波解の安定性と不安定性が変わる臨界的な状況を考察し、非線形分散波動方程式の孤立波解のまわりの解の大域挙動の解明を目指している。 2022年度は2021年度に引き続き、空間1次元において引力的なデルタ関数ポテンシャルと5次の非線形相互作用および斥力的な3次の非線形相互作用をもつ非線形シュレディンガー方 程式の定在波解の安定性について考察した。空間1次元において5次の非線形項は質量 (L^2) の意味で臨界的である。劣臨界的な摂動項である引力的なデルタ関数ポテンシャルと斥力的な3次の非線形項を導入することにより、この臨界的状況は壊れるが、両者が釣り合ったとき、別の新たな臨界的状況が生じる。質量 (L^2ノルム) が臨界質量よりも真に小さい場合、考察している方程式の定在波解はすべて安定であると予想されるが、このことを中西賢次教授(京都大学数理解析研究所)との共同研究により、簡潔な変分的方法を用いた統一的な証明を与え、論文にまとめた。また、質量 (L^2ノルム) が臨界質量よりも真に大きい場合は、考察している方程式の定在波解はすべて不安定であると予想されるが、これまでは振動数がある値よりも大きい場合に対してしかこのことを証明することができなかった。この問題に対しても、定在波の新しい変分的特徴付けを導入することにより、すべての振動数に対して不安定性を証明することができた。臨界質量をもつ定在波解の不安定性については今後の研究課題である。
该研究的目的是促进对非线性分散波方程(例如非线性schrödinger方程和非线性klein-klein-gordon方程)的统一波解的稳定性的研究。特别是,我们考虑了关键情况,在这种情况下,孤立波解决方案的稳定性和不稳定性根据参数而变化,并旨在阐明围绕非线性分散波方程的单独波解决方案的全球行为。在2022年,在2021年,我们讨论了在空间一维中具有有吸引力的Delta功能电位的非线性Schrödinger方程的稳定性,具有五阶非线性相互作用和排斥的三阶非线性相互作用。在空间的一个维度上,第五阶非线性项在质量意义上至关重要(l^2)。引入亚临界扰动术语,有吸引力的三角洲功能潜力和排斥的立方非线性术语,破坏了这种批判性情况,但是当它们保持平衡时,会出现另一个新的批判情况。如果质量(l^2规范)确实小于临界质量,则预计讨论的方程式的所有常驻波解决方案都将是稳定的。这是与尼卡尼希·肯吉(Nakanishi Kenji)教授(京都大学数学分析研究所)的联合研究项目,旨在使用简单的变分方法提供统一的证明,并在论文中进行总结。此外,如果质量(l^2规范)确实大于临界质量,则预期所考虑的方程式的所有常驻波解决方案都将是不稳定的,但是到目前为止,这仅在频率大于一定值的情况下才能证明这一点。同样,这个问题能够通过引入驻波的新变异表征来证明所有频率的不稳定。具有临界质量的常驻波解决方案的不稳定性是未来的研究主题。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
非線形シュレディンガー方程式の定在波の強い不安定性について
非线性薛定谔方程中驻波的强不稳定性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人
- 通讯作者:太田 雅人
Stability of standing waves for cubic-quintic nonlinear Schrodinger equation with delta potential
具有δ势的三次五次非线性薛定谔方程的驻波稳定性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人
- 通讯作者:太田 雅人
デルタ関数を持つ非線形シュレディンガー方程式の定在波の安定性
具有δ函数的非线性薛定谔方程的驻波稳定性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人;横山 和義;水町 徹;太田 雅人
- 通讯作者:太田 雅人
On cubic-quintic nonlinear Schrodinger equations with delta potential
具有δ势的三次五次非线性薛定谔方程
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人;横山 和義;水町 徹;太田 雅人;山﨑陽平;Masahito Ohta
- 通讯作者:Masahito Ohta
デルタ関数を伴う非線形シュレディンガー方程式の定在波
具有δ函数的非线性薛定谔方程的驻波
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人;横山 和義;水町 徹;太田 雅人;山﨑陽平;Masahito Ohta;水町 徹;太田雅人
- 通讯作者:太田雅人
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
太田 雅人其他文献
相転移を含む非粘性混相流の数理モデリング
无粘多相流(包括相变)的数学建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一 - 通讯作者:
古場一
q-Analogues of Laplace and Borel transforms with application to q-difference equations
拉普拉斯和博雷尔变换的 q 类似物及其在 q 差分方程中的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shinji Adachi;Masataka Shibata;Tatsuya Watanabe;太田 雅人;H.Takamura;Mathieu Colin and Tatsuya Watanabe;Ryo IKEHATA;田原秀敏;太田 雅人;Masahito Ohta;H. Tahara - 通讯作者:
H. Tahara
Stability of standing waves for a system of nonlinear Schrodinger equations with cubic nonlinearity
具有三次非线性的非线性薛定谔方程组的驻波稳定性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shinji Adachi;Masataka Shibata;Tatsuya Watanabe;太田 雅人;H.Takamura;Mathieu Colin and Tatsuya Watanabe;Ryo IKEHATA;田原秀敏;太田 雅人;Masahito Ohta - 通讯作者:
Masahito Ohta
積分方程式からみる非線形波動方程式の初期値問題
从积分方程看非线性波动方程的初值问题
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shinji Adachi;Masataka Shibata;Tatsuya Watanabe;太田 雅人;H.Takamura;Mathieu Colin and Tatsuya Watanabe;Ryo IKEHATA;田原秀敏;太田 雅人;Masahito Ohta;H. Tahara;高村博之 - 通讯作者:
高村博之
太田 雅人的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('太田 雅人', 18)}}的其他基金
非線形分散型方程式の孤立波の不安定性解析
非线性色散方程的孤波不稳定性分析
- 批准号:
24K06803 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultrafast measurement of relativistic electromagnetic radiation
相对论电磁辐射的超快测量
- 批准号:
23K13080 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
無衝突ワイベル衝撃波による粒子加速に関する研究
无碰撞Weibel激波粒子加速研究
- 批准号:
19J20765 - 财政年份:2019
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非線形波動方程式系の解の爆発に関する研究
非线性波动方程系统解爆炸的研究
- 批准号:
14740099 - 财政年份:2002
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
異なる伝播速度をもつ半線形波動方程式系の臨界爆発問題の研究
不同传播速度的半线性波动方程系统临界爆炸问题研究
- 批准号:
12740104 - 财政年份:2000
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非線形波動方程式の解の特異性の解析
非线性波动方程解的奇异性分析
- 批准号:
10740084 - 财政年份:1998
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
非線形分散型及び波動方程式における特異なランダム動力学
非线性色散和波动方程中的奇异随机动力学
- 批准号:
23K25776 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ポテンシャル項を持つ非線形分散型波動方程式の大域ダイナミクス
具有势项的非线性分布波动方程的全局动力学
- 批准号:
24K16947 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
非線形分散型及び波動方程式における特異なランダム動力学
非线性色散和波动方程中的奇异随机动力学
- 批准号:
23H01079 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 2.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)