Numerical and Analytical Studies of Boundary Value Problems for PDE's. Direct and Inverse Problems

偏微分方程边值问题的数值和分析研究。

基本信息

  • 批准号:
    9704575
  • 负责人:
  • 金额:
    $ 10.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

9704575 Vogelius The research funded by this grant will focus on analytical and numerical studies of partial differential equations. There will be an emphasis on direct as well as on inverse problems. As far as direct problems are concerned, the effective boundary layer behavior encountered in connection with PDE's with rapidly oscillating coefficients will be investigated. PDE's of this form are used to model the behavior of composite materials. Other ``homogenization" problems for composite materials, for example, certain problems associated with the relationship between microscopic and macroscopic failure (including debonding of closely spaced fibers and delamination) will be studied. Concerning inverse problems, those to be investigated include 1) inverse "coefficient" problems for linear elliptic equations with spatially varying coefficients and 2) inverse "source" problems for semilinear elliptic equations. The data used for identification in both cases consists of overdetermined (Dirichlet or Neumann) boundary data. The analytical component of this work concerns such questions as identifiability and continuous dependence. For the inverse "coefficient" problem, the investigation of the identification of cracks, inhomogeneities and corrosion damage will be continued and a study related to the ``imaging" of thin films will be initiated; for the inverse "source problem," connections with the well known Schiffer (or Pompeiu) conjecture will be investigated with particular emphasis on the relation between the ``smoothness" of the domain and the ability to identify. The numerical work will be devoted to the design of effective reconstruction methods, which to the largest extent possible rely on structural information about the solutions of the underlying PDE. The research funded by this grant will focus on analytical and numerical problems related to continuum mechanics. The research on direct problems has applications to several impor tant practical problems, for instance the assessment of the strength and potential failure of composite materials (including fracture, debonding of fibers and delamination). Special emphasis is put on the understanding of the relationship between microscopic and macroscopic behavior. The research on inverse problems has immediate applications to 1) medical impedance imaging, 2) nondestructive testing of mechanical parts (and sensors) as well as 3) the interpretation of magnetic diagnostics for Tokamak (fusion) devices. Part of this research is concerned with determining the sufficiency of the proposed boundary data for the various identifications (proving uniqueness and continuous dependence results). Another part of this research involves the design of effective algorithms, for instance for the detection and location of cracks and inhomogeneities in metal components as well as for the determination of the level of oxidation of thin films (gas sensors) using real experimental data. There will be an active involvement of post-doctoral researchers as well as graduate students and hopefully even some advanced undergraduate students in various aspects of the research.
9704575 Vogelius这项赠款资助的研究将集中于部分微分方程的分析和数值研究。将要强调直接和反问题。就直接问题而言,将研究与PDE遇到的有效边界层行为与迅速振荡系数有关。该形式的PDE用于建模复合材料的行为。例如,将研究复合材料的其他``均质化问题'',将研究与显微镜和宏观失败之间的关系某些问题(包括对纤维紧密间隔的纤维和分层的剥离)相关的问题。将要调查的逆问题。这些问题包括1)逆向“与空格eLlivers elporter elporter ellivers eelders e e e el e el e el e el e el e el e el e el e elsive e Ell的问题”,以及2)2)2)方程式。对于逆向“源问题”,将研究与众所周知的schiffer(或庞贝)猜想的联系,特别强调域的``平稳性''与识别能力之间的关系。数值工作将用于有效的构造方法的设计,这些方法依赖于结构上的限制,该方法依赖于构建范围,该方法依赖于结构的信息,而这些信息依赖于结构信息,而这些信息是依据的,而这些方法依赖于构建范围的信息。与连续机制有关的分析和数值问题。机械零件(和传感器)的无损测试以及3)解释Tokamak(融合)设备的磁性诊断。这项研究的一部分与确定所提出的边界数据的充分性有关各种标识(证明独特性和持续依赖性结果)。这项研究的另一部分涉及有效算法的设计,例如,用于检测金属成分中裂纹和不均匀性的位置,以及使用实际实验数据确定薄膜(气体传感器)的氧化水平。博士后研究人员以及研究生将积极参与研究,甚至希望在研究的各个方面都有一些高级本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Michael Vogelius其他文献

Imagerie électromagnétique de petites inhomogénéités
小异同源电磁图像
  • DOI:
    10.1051/proc:072204
    10.1051/proc:072204
  • 发表时间:
    2008
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yves Capdeboscq;Michael Vogelius
    Yves Capdeboscq;Michael Vogelius
  • 通讯作者:
    Michael Vogelius
    Michael Vogelius
Inverse Problems for Partial Differential Equations
  • DOI:
    10.1007/0-387-32183-7
    10.1007/0-387-32183-7
  • 发表时间:
    2012
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Vogelius
    Michael Vogelius
  • 通讯作者:
    Michael Vogelius
    Michael Vogelius
共 2 条
  • 1
前往

Michael Vogelius的其他基金

Electromagnetic Signatures of Inhomogeneities: Visibility vs. Invisibility
不均匀性的电磁特征:可见性与不可见性
  • 批准号:
    2205912
    2205912
  • 财政年份:
    2022
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Standard Grant
    Standard Grant
Inverse Problems for Partial Differential Equations
偏微分方程的反问题
  • 批准号:
    1211330
    1211330
  • 财政年份:
    2012
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Analytical and computational studies of direct and inverse boundary value problems for PDEs
偏微分方程正向和逆边值问题的分析和计算研究
  • 批准号:
    0307119
    0307119
  • 财政年份:
    2003
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Standard Grant
    Standard Grant
U.S.-France Cooperative Research: Boundary Layers, Interfaces and Defects in Composite Media
美法合作研究:复合介质中的边界层、界面和缺陷
  • 批准号:
    0003788
    0003788
  • 财政年份:
    2001
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Standard Grant
    Standard Grant
Analytical and Computational Studies of Boundary Value Problems for PDE's. Direct and Inverse Problems
偏微分方程边值问题的分析和计算研究。
  • 批准号:
    0072556
    0072556
  • 财政年份:
    2000
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences: Analytical & Numerical Aspects of Inverse Problems for Differential Equations
数学科学:分析
  • 批准号:
    9202042
    9202042
  • 财政年份:
    1992
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences: Analytical and Numerical Aspects of Inverse Problems for Differential Equations
数学科学:微分方程反问题的分析和数值方面
  • 批准号:
    8902532
    8902532
  • 财政年份:
    1989
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences: Rapid Variations in Elliptic Equations. Homogenization and Relaxation
数学科学:椭圆方程的快速变化。
  • 批准号:
    8601490
    8601490
  • 财政年份:
    1986
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

基于有限质点法的结构—土体整体协同分析模型与高效数值算法研究
  • 批准号:
    52308218
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
京津冀区域气溶胶数浓度对排放变化响应的数值模拟研究及机制分析
  • 批准号:
    42377105
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
若干谱方法与高振荡问题的理论分析和数值方法研究
  • 批准号:
    12371367
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
舰载大功率射频同轴电缆的稳相机理数值分析及鲁棒性设计方法研究
  • 批准号:
    52301414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模有源相控阵天线散射特性分析的场路混合数值建模技术研究
  • 批准号:
    62371427
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Studies on the Navier-Stokes equations by numerical methods
纳维-斯托克斯方程的数值方法研究
  • 批准号:
    22K03438
    22K03438
  • 财政年份:
    2022
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Studies on verified numerical computations for nonlinear hyperbolic partial differential equations
非线性双曲偏微分方程数值计算验证研究
  • 批准号:
    18K13453
    18K13453
  • 财政年份:
    2018
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
    Grant-in-Aid for Early-Career Scientists
Studies of the matrix model for superstring theory by analytical and numerical methods
超弦理论矩阵模型的解析和数值研究
  • 批准号:
    18K03614
    18K03614
  • 财政年份:
    2018
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Analytical and numerical studies of gapless fractionalized phases and topological phases and their transformations
无间隙分段相和拓扑相及其变换的分析和数值研究
  • 批准号:
    1619696
    1619696
  • 财政年份:
    2016
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Standard Grant
    Standard Grant
Studies on verified numerical computations for nonlinear parabolic partial differential equations
非线性抛物型偏微分方程数值计算验证研究
  • 批准号:
    15K17596
    15K17596
  • 财政年份:
    2015
  • 资助金额:
    $ 10.2万
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
    Grant-in-Aid for Young Scientists (B)