Conformational Coupling and the Basis for Metal Ion Specificity in Superoxide Dismutase
超氧化物歧化酶的构象偶联和金属离子特异性的基础
基本信息
- 批准号:9418181
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-01-01 至 1997-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9418181 Miller The research will employ Fe and Mn-containing superoxide dismutase (SOD) as a model system and exploit the unique ability of nuclear magnetic resonance spectroscopy (NMR) to directly observe protein groups and monitor structure in solution. The objectives are to elucidate the conformational interplay between the metal ion site and the protein of SOD upon substrate analog binding to the metal ion, and to determine why FeSOD protein is inactive with Mn bound instead of Fe, and MnSOD protein is inactive with Fe bound instead of Mn. Isotope edited NMR will be used in conjunction with amino acid-specific isotopic labeling to produce drastically simplified spectra showing signals of labeled amino acids only. Comparisons of spectra of SOD with and without the substrate analog azide bound will identify amino acids affected by azide binding and indicate by what mechanisms the protein is conformationally responsive to events at the metal ion. By monitoring amino acids at the interfaces between domains or subunits, it will be possible to determine whether the conformation change involves potentially general mechanisms for conformational change including (1) relative motions of domains bridged by the metal ion, (2) relative motions of subunits and (3) propagation of conformational effects via hydrogen bonding networks. These studies build on the known structure for SOD and exploit the unique ability of NMR to directly observe protons, provide information on their participation in hydrogen bonds and provide qualitative and quantitative information on both structure and dynamics of proteins in solution unconstrained by crystal packing. The work will also determine why SODs containing the wrong metal ion are inactive, by evaluating their competence for individual elements of catalysis including each of the half reactions, the reduction midpoint potential, proton donation, substrate analog binding and active site structure, thus specifying the chemical reaso n for catalytic incompetence. Site-directed and random mutagenesis will be used to convert MnSOD protein into a FeSOD. Characterization of these SODs will reveal what amino acid changes are important, the extent to which these amino acid changes support activity with the wrong metal, and at what cost to activity with the correct metal. %%% Metalloenzymes combine the reactivity of metal centers with the exquisite specificity and control of enzymes. The Fe-containing superoxide dismutases (FeSODs) and the homologous Mn-containing superoxide dismutases (MnSODs) are metalloenzymes that catalyze the conversion of superoxide to dioxygen and hydrogen peroxide. SOD is relatively small, very stable and soluble but also embodies two central features of metalloenzyme catalysis: the metal site and the protein are believed to affect each other's structure, and each type of SOD, while able to bind either Fe or Mn, is only active with one. Thus, the structure and activity of the enzyme reflect interactions between the protein and the metal ion, and these interactions are metal ion specific. The goal of the research is (1) to determine how much of the protein is affected by binding of small molecules to the metal ion, and (2) to describe the protein structural change in terms of relative movement of the modules that make up the protein structure. The work will also determine why MnSOD protein is not active with Fe bound and FeSOD protein is not active with Mn bound. This new understanding of the protein-metal cooperation that is necessary for metalloenzyme catalytic activity will advance ongoing efforts to design or modify metalloenzymes to catalyze useful reactions in drug synthesis, waste detoxification and chemical sensors. ***
9418181 Miller研究将采用FE和MN的超氧化物歧化酶(SOD)作为模型系统,并利用核磁共振光谱(NMR)的独特能力直接观察溶液中的蛋白质基团并监测结构。 目的是阐明金属离子位点与底物类似物与金属离子结合时SOD蛋白之间的构象相互作用,并确定为什么Fesod蛋白与MN绑定而不是Fe而不是Fe而不是Fe,而MNSOD蛋白与Fe结合而不是MN。 同位素编辑的NMR将与氨基酸特异性同位素标记结合使用,以产生仅显示标记氨基酸信号的巨大简化光谱。 带有和没有底物类似物叠氮化的SOD光谱的比较将识别受叠氮化物结合影响的氨基酸,并通过该蛋白质对金属离子上事件的构象反应的哪种机制表示。 通过监测域或亚基之间界面的氨基酸,可以确定构象变化是否涉及构象变化的潜在通用机制,包括(1)由金属离子桥接的域的相对运动,(2)亚基的相对运动和(3)通过氢键合网的构象效应通过氢键合网的传播。 这些研究以SOD的已知结构为基础,并利用NMR直接观察质子的独特能力,提供有关其参与氢键的信息,并提供有关蛋白质在不受晶体堆积不受限制的溶液中的结构和动态的定性和定量信息。 这项工作还将确定为什么包含错误金属离子的SOD是通过评估其对各个催化元素的能力,包括每一个反应,减少中点势,质子捐赠,底物模拟结合和活性位点结构,从而指定化学物质因催化能力而指定化学物质。 位置定向和随机诱变将用于将MNSOD蛋白转化为Fesod。 这些SOD的表征将揭示哪些氨基酸变化很重要,这些氨基酸变化的程度以错误的金属支持活动,以及使用正确的金属的活动成本。 %% %%金属酶将金属中心的反应性与精美的特异性和酶的控制结合在一起。 含有FE的超氧化物歧化酶(Fesods)和同源含Mn的超氧化物歧化酶(MNSODS)是属于甲氧化物的金属酶,可催化超氧化物向二氧化氧和过氧化氢的转化。 SOD相对较小,非常稳定且可溶性,但也体现了金属酶催化的两个核心特征:金属位点和蛋白质被认为会影响彼此的结构,每种类型的SOD虽然能够结合Fe或Mn,但仅与一个相结合。 因此,酶的结构和活性反映了蛋白质与金属离子之间的相互作用,这些相互作用是金属离子特异的。 研究的目的是(1)确定小分子与金属离子的结合影响了多少蛋白质,以及(2)描述构成蛋白质结构的模块的相对运动的蛋白质结构变化。 这项工作还将确定为什么MNSOD蛋白与Fe结合没有活性,而Fesod蛋白在MN结合的情况下不活跃。 对金属酶催化活性所必需的蛋白质金属合作的这种新理解将促进持续设计或修改金属酶以催化有用的药物合成,废物解毒和化学传感器的反应。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne-Frances Miller其他文献
<sup>19</sup>F NMR reveals dynamics not evident in crystal structure of long-chain flavodoxin
- DOI:
10.1016/j.bpj.2022.11.2498 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Sharique Khan;Anne-Frances Miller;Ahmadullah Ansari - 通讯作者:
Ahmadullah Ansari
Anne-Frances Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne-Frances Miller', 18)}}的其他基金
Differentiating the Two Complementary Flavins in a Bifurcating Electron Transfer Flavoprotein
区分二叉电子转移黄素蛋白中的两种互补黄素
- 批准号:
2108134 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Mechanisms of Energy Conservation in Bifurcating Electron Transfer Flavoproteins
分叉电子转移黄素蛋白的能量守恒机制
- 批准号:
1808433 - 财政年份:2018
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
How the Superoxide Dismutase Protein Specifies the Reactivity of Bound Fe
超氧化物歧化酶蛋白如何确定结合铁的反应性
- 批准号:
0129599 - 财政年份:2002
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Understanding the Basis for Metal Ion Specificity in Fe- andMn-Superoxide Dismutases: Learning to Make Bound Metal IonsCatalytically Active
了解铁和锰超氧化物歧化酶中金属离子特异性的基础:学习使结合的金属离子具有催化活性
- 批准号:
9728793 - 财政年份:1998
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
相似国自然基金
大型交通基础设施建设行为与生态环境非对称耦合机理研究
- 批准号:72371043
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于位移放大的浸没式大流量二维高速开关阀耦合工作机理及基础设计理论研究
- 批准号:52375067
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高铝煤催化气化和气化渣铝硅提取耦合体系的构筑及钠铝/钙硅反应定向调控的化学基础
- 批准号:22378410
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于梯度力-化耦合重建微环境诱导牙周复合体再生的基础研究
- 批准号:82370939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
煤炭分级转化耦合加压富氧燃烧捕集CO2的基础问题研究
- 批准号:52336005
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
相似海外基金
Mechanistic Basis of Calcium Sensing Receptor Signaling
钙传感受体信号传导的机制基础
- 批准号:
10467554 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Mechanistic Basis of Calcium Sensing Receptor Signaling
钙传感受体信号传导的机制基础
- 批准号:
10596176 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Elucidating sequence, structural and dynamic basis of the functional regulation of membrane proteins
阐明膜蛋白功能调节的序列、结构和动态基础
- 批准号:
10275155 - 财政年份:2021
- 资助金额:
$ 30.5万 - 项目类别:
Structural Basis of Signal Instigation Through Family C GPCRs
通过 C 族 GPCR 激发信号的结构基础
- 批准号:
10767205 - 财政年份:2021
- 资助金额:
$ 30.5万 - 项目类别:
Structural Basis of Signal Instigation Through Family C GPCRs
通过 C 族 GPCR 激发信号的结构基础
- 批准号:
10583455 - 财政年份:2021
- 资助金额:
$ 30.5万 - 项目类别: