Elucidating sequence, structural and dynamic basis of the functional regulation of membrane proteins
阐明膜蛋白功能调节的序列、结构和动态基础
基本信息
- 批准号:10275155
- 负责人:
- 金额:$ 35.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsCarrier ProteinsCellsComputer ModelsComputing MethodologiesCoupledCouplingDataData SetDevelopmentEmerging TechnologiesFluorescenceFree EnergyG-Protein-Coupled ReceptorsIn VitroInvestigationIon CotransportIonsKineticsLibrariesMeasuresMembrane ProteinsMembrane Transport ProteinsMethodsModelingMolecular ConformationMutagenesisMutationNeuronsNeurotransmitter ReceptorNeurotransmittersPathway interactionsProtein ConformationProteinsPsychological TransferRegulationResearchResearch Project GrantsResolutionRoleSiteSodiumSorting - Cell MovementStructureTechniquesVariantalgorithm developmentbaseconformational conversiondeep learningdesignexperimental studyimprovedin silicomachine learning algorithmmolecular dynamicsmonoaminemutantmutation screeningneurotransmitter transportprogramsprotein functionprotein structure functionsimulationsuccesssugar
项目摘要
Project Summary
The overall aim of the research is Shukla group is to develop computational methods that facilitate investigation of rare
conformational transitions in proteins and help guide the design of experiments to validate the in silico predictions. In par-
ticular, we apply these computational methods to investigate functional regulation of membrane proteins such as membrane
transporters and G-protein coupled receptors (GPCRs). Here, we propose development of transfer learning based methods
to predict the effect of mutations on protein function and apply these methods to investigate monoamine transporters, sugar
transporters and Class C GPCRs.
Deep mutagenesis, whereby tens of thousands of mutational effects are determined by combining in vitro selections of
sequence variants with Illumina sequencing, is an emerging technology for indirectly interrogating and observing protein
conformations in living cells; the solving of an integrative structure of a neuronal class C G protein-coupled receptor in
an active conformation by deep mutagenesis-guided modeling is one prominent example of this approach's success. Using
deep mutagenesis and molecular dynamics simulations to inform each other, we plan to determine the mechanism of ion-
coupled neurotransmitter import by monoamine transporters at atomic resolution. Fluorescent substrates have enabled us to
use fluorescence-based sorting of libraries of transporter mutants to find mutations along the entire permeation pathway
that increase or decrease substrate import. These comprehensive mutational landscapes will be used to interpret and
support/reject hypotheses from simulations, including the role of ion-coupling in substrate transport regulation, proposed
free energy barriers in the conformational-free energy landscape that limit import kinetics, and how sodium-neurotransmitter
symport is coupled by a shared cytosolic exit pathway. Other notable features that arise from the deep mutational scans
(e.g. putative regulatory sites) will be further explored, and a machine learning algorithm will be applied to transfer
mutagenesis information to related transporters; the predicted mutational landscapes will then be validated by a small
number of informative targeted mutants. We will further relate sequence to conformation and activity in metabotropic
neurotransmitter receptors and sugar transporters. Finally, we plan to improve the proposed transfer algorithms by using
deep learning techniques, which will facilitate integration of features derived from simulation datasets and multiple deep
mutational scans to inform the effect of mutations on related proteins or tasks.
The success of the proposed research program of results will be measured by development of algorithms that can accurately
predict the variant effects on protein structure and function, elucidation of the mechanisms of ion-coupled regulation of
neurotransmitter transport, selectivity mechanisms in sugar transporters and activation mechanisms of class C GPCRs.
项目摘要
该研究的总体目的是Shukla组是开发计算方法,以促进稀有的研究
蛋白质中的构象转变,并有助于指导实验的设计以验证计算机预测中的。在par-
ticular,我们应用这些计算方法来研究膜蛋白(例如膜)的功能调节
转运蛋白和G蛋白偶联受体(GPCR)。在这里,我们建议开发基于转移学习的方法
为了预测突变对蛋白质功能的影响,并应用这些方法来研究单胺转运蛋白,糖
转运蛋白和C类GPCR。
深诱变,从而通过结合体外选择来确定成千上万的突变效应
Illumina测序的序列变体是一种间接询问和观察蛋白质的新兴技术
活细胞的构象;在神经元类C G蛋白偶联受体中的综合结构的求解
深诱导引导的建模是这种方法成功的一个重要例子。使用
深诱变和分子动力学模拟以互相告知,我们计划确定离子机理
单胺转运蛋白在原子分辨率下导入的神经递质偶联。荧光基材使我们能够
使用基于荧光的转运蛋白突变体库的排序沿整个渗透途径finftif finf。
增加或减少底物进口。这些全面的突变景观将用于解释和
拟议
限制进口动力学的无会议能源景观中的自由能屏障以及钠神经递质如何
Symport由共享的胞质出口途径耦合。深度突变扫描引起的其他值得注意的特征
(例如,推定的监管站点)将进一步探索,并将应用机器学习算法进行转移
相关转运蛋白的诱变信息;然后,预测的突变景观将通过一个小的
信息靶向突变体的数量。我们将进一步将序列与代谢性的会议和活动联系起来
神经递质接收器和糖转运蛋白。最后,我们计划通过使用
深度学习技术,这将有助于整合来自模拟数据集和多个深层的特征
突变扫描以告知突变对相关蛋白质或任务的影响。
拟议的结果研究计划的成功将通过开发算法的开发来衡量,这些算法可以准确
预测对蛋白质结构和功能的变化影响,阐明离子耦合调节机制
神经递质的转运,糖转运蛋白中的选择性机制和C类GPCR的激活机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diwakar Shukla其他文献
Diwakar Shukla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diwakar Shukla', 18)}}的其他基金
Machine learning of time-series single-cell drug screening to elucidate HIV latency control mechanisms
时间序列单细胞药物筛选的机器学习阐明 HIV 潜伏期控制机制
- 批准号:
10402668 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Machine learning of time-series single-cell drug screening to elucidate HIV latency control mechanisms
时间序列单细胞药物筛选的机器学习阐明 HIV 潜伏期控制机制
- 批准号:
10674721 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Elucidating sequence, structural and dynamic basis of the functional regulation of membrane proteins
阐明膜蛋白功能调节的序列、结构和动态基础
- 批准号:
10710227 - 财政年份:2021
- 资助金额:
$ 35.46万 - 项目类别:
相似国自然基金
蛋白折叠调控高分子纳米载体介导去折叠细胞因子的重折叠与递送
- 批准号:52373153
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自噬抑制型细胞内蛋白递送载体的制备及其在肿瘤协同治疗中的应用
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
自噬抑制型细胞内蛋白递送载体的制备及其在肿瘤协同治疗中的应用
- 批准号:52173145
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
AFM单分子力谱研究聚乙二醇修饰对类弹性蛋白多肽药物载体的靶向性及细胞内吞的影响
- 批准号:21903037
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
小肽转运载体2在奶牛乳腺上皮细胞中的功能及其调控机制研究
- 批准号:31902178
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating sequence, structural and dynamic basis of the functional regulation of membrane proteins
阐明膜蛋白功能调节的序列、结构和动态基础
- 批准号:
10710227 - 财政年份:2021
- 资助金额:
$ 35.46万 - 项目类别:
Operation Mechanism of CLCF Fluoride/Proton Antiporter
CLCF氟化物/质子逆向转运蛋白的运行机制
- 批准号:
10201208 - 财政年份:2021
- 资助金额:
$ 35.46万 - 项目类别:
Human choroid plexus epithelial cells derived from APOE isogenic iPSCs
源自 APOE 同基因 iPSC 的人脉络丛上皮细胞
- 批准号:
9810057 - 财政年份:2019
- 资助金额:
$ 35.46万 - 项目类别:
Novel Strategies for Development of a Multiplexed Test with Expanded Content for Spinal Muscular Atrophy
开发具有扩展内容的脊髓性肌萎缩症多重测试的新策略
- 批准号:
9909806 - 财政年份:2019
- 资助金额:
$ 35.46万 - 项目类别:
Mapping Transport Pathways through Nuclear Pores using 3D Super-Resolution Microscopy
使用 3D 超分辨率显微镜绘制通过核孔的传输路径
- 批准号:
10521623 - 财政年份:2018
- 资助金额:
$ 35.46万 - 项目类别: