Mathematical Sciences: Global Dynamics and Geometry in High Dimensional Nonlinear Dynamical Systems

数学科学:高维非线性动力系统中的全局动力学和几何

基本信息

  • 批准号:
    9403691
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-15 至 1997-06-30
  • 项目状态:
    已结题

项目摘要

9403691 Wiggens This research is concerned with the global, geometric analysis of high dimensional nonlinear dynamical systems. The physical motivation for much of the analysis arises from problems in theoretical chemistry. Over the past five years experimental techniques have been developed in chemistry to the point where real time dynamical data related to molecular interactions and dynamics can be obtained, which has resulted in the area of research known as ``femtochemistry''. As a result, we are at a point where dynamical systems research can play a role in the interpretation of this new experimental data. Many of the questions of interest are global and geometrical in nature. For example, answers to questions related to intramolecular and intermolecular energy transfer depend on the geometry and dynamics associated with surfaces of various dimensions and shapes in phase space. There is a need for applied mathematical research in this area since most of the work of theoretical chemists in this area has been carried out with low dimensional models. Since most realistic models of molecules are higher dimensional, it is important to develop mathematical techniques that apply to high dimensional systems as well as understand higher dimensional dynamical phenomena in general. One result of this research will be the development of mathematical methods for understanding intramolecular and intermolecular energy transfer in more realistic molecular systems. This research is concerned with the global, geometric analysis of high dimensional nonlinear dynamical systems. The physical motivation for much of the analysis arises from problems in theoretical chemistry. Over the past 5 years experimental techniques have been developed in chemistry to the point where real time dynamical data related to molecular interactions and dynamics can be obtained, which has resulted in the area of research known as ``femtochemistry''. As a result, we are at a point w here dynamical systems research can play a role in the interpretation of this new experimental data. Many of the questions of interest are global and geometrical in nature. For example, answers to questions related to intramolecular and intermolecular energy transfer depend on the geometry and dynamics associated with invariant manifolds that arise near resonances in phase space, and these invariant manifolds form the ``network'' in phase space which governs energy transfer issues. Near such regions the invariant manifold geometry is much more complicated than the standard ``invariant tori'' picture and new methods need to be developed. Also, one often encounters singular perturbation phenomena near such resonance regions which forces one to treat ``elliptic'' and ``hyperbolic'' phenomena simultaneously. One promising method for such problems is the so-called ``energy-phase'' method developed by Haller and Wiggins, largely in the context of two-degree-of-freedom systems, which enables one to join together the ``elliptic'' and ``hyperbolic'' phenomena that arises near resonances. We will extend this method to multi-degree-of-freedom systems. At the same time we will be interested in understanding mechanisms that give rise to complicated ``chaotic'' behavior that are ``intrinsically high dimensional'', i.e. behavior that is not just a ``scaled up'' version of typical low dimensional behavior. One result of this research will be the development of mathematical methods for understanding intramolecular and intermolecular energy transfer in more realistic molecular systems.
9403691 Wiggens这项研究与高维非线性动力学系统的全局几何分析有关。 大部分分析的物理动机来自理论化学中的问题。 在过去的五年中,实验技术是在化学中开发的,即可以获得与分子相互作用和动力学相关的实时动力学数据,这导致了被称为``fem fem tem tem fem tem fem tem fem'''的研究领域。 结果,我们正处于动态系统研究中可以在解释这一新实验数据中发挥作用。 许多感兴趣的问题本质上都是全球和几何问题。 例如,与分子内和分子间的能量转移有关的问题的答案取决于与相位空间中各个维度和形状的表面相关的几何和动力学。 由于该领域的大多数理论化学家的工作都是使用低维模型进行的,因此需要在该领域进行数学研究。 由于大多数现实的分子模型是较高的维度,因此开发适用于高维系统的数学技术以及一般而言的高维动力学现象非常重要。这项研究的结果将是发展数学方法,以理解更现实的分子系统中分子内和分子间的能量转移。 这项研究与高维非线性动力学系统的全局几何分析有关。 大部分分析的物理动机来自理论化学中的问题。 在过去的五年中,实验技术是在化学中开发的,即可以获得与分子相互作用和动力学有关的实时动态数据,这导致了被称为``fem femto'''的研究领域。 结果,我们处于动态系统研究可以在解释这一新实验数据中发挥作用。 许多感兴趣的问题本质上都是全球和几何问题。 例如,对与分子内和分子间的能量转移有关的问题的答案取决于与不变的流形相关的几何和动态,这些歧管在相位空间中产生几乎谐振,并且这些不变的歧管在控制能量传递问题的相空间中形成了“网络” 。 在这样的区域附近,不变的歧管几何形状比标准的``不变式''图片要复杂得多,需要开发新的方法。同样,人们经常在这样的共振区域附近遇到奇异的扰动现象,这迫使人们同时对待``椭圆形''和``双曲线''现象。 解决此类问题的一种有前途的方法是Haller和Wiggins开发的所谓``能量相''方法,主要是在两度自由的系统的背景下,这使人们能够将``椭圆形''一起连接在一起。 '和``双曲线''现象近在共鸣。我们将将此方法扩展到多度自由度系统。 与此同时行为。 这项研究的结果将是发展数学方法,以理解更现实的分子系统中分子内和分子间的能量转移。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Wiggins其他文献

Phase Space Structure and Transport in a Caldera Potential Energy Surface
破火山口势能面的相空间结构和输运
  • DOI:
    10.1142/s0218127418300422
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Katsanikas;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
ENSO dynamics in current climate models: an investigation using nonlinear dimensionality reduction
当前气候模型中的 ENSO 动力学:使用非线性降维的研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Ross;P. Valdes;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
Bond breaking in a Morse chain under tension: fragmentation patterns, higher index saddles, and bond healing.
莫尔斯链在张力下的键断裂:碎片模式、更高的鞍指数和键愈合。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    F. Mauguière;P. Collins;G. S. Ezra;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
Phase space structure and escape time dynamics in a Van der Waals model for exothermic reactions.
放热反应范德华模型中的相空间结构和逃逸时间动力学。
  • DOI:
    10.1103/physreve.102.062203
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francisco Gonzalez Montoya;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
Integrability and strong normal forms for non-autonomous systems in a neighbourhood of an equilibrium
平衡邻域非自治系统的可积性和强范式
  • DOI:
    10.1063/1.4962802
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Alessandro Fortunati;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins

Stephen Wiggins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Wiggins', 18)}}的其他基金

'The Nonlinear Dynamical Foundations of Transition State Theory in Systems with Three or More Degrees-of-Freedom'
“三自由度或更多自由度系统中过渡态理论的非线性动力学基础”
  • 批准号:
    0071338
  • 财政年份:
    2000
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
U.S.-Spain Cooperative Research: Computational and Analytical Dynamical Systems Techniques for the Study of Global Dynamics in Theoretical Chemistry
美国-西班牙合作研究:理论化学中全球动力学研究的计算和​​分析动力系统技术
  • 批准号:
    9910336
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
US-France Cooperative Research: Geometrical Analysis of the Vibrational Dynamics of Highly Excited Molecules with Three Degrees-of-Freedom
美法合作研究:三自由度高激发分子振动动力学的几何分析
  • 批准号:
    9910196
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Theoretical Chemistry, Dynamical Systems, and the Geometry of Global Phase Space Dynamics
理论化学、动力系统和全局相空间动力学几何
  • 批准号:
    9704759
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Presidential Young Investigators Award
总统青年研究员奖
  • 批准号:
    8958344
  • 财政年份:
    1989
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

设立面向全球的科学研究基金实施路径研究
  • 批准号:
    L2124033
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
“NOy全球循环”科学假设的提出和在青藏高原的观测验证
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
如何做好面向全球的科学研究资助工作
  • 批准号:
    L2142001
  • 批准年份:
    2021
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
全球治理背景下的海洋与极地科学发展战略研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
    专项基金项目
提高全球陆表与海面净辐射遥感估算精度的关键科学问题研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of in situ orientation on quantitative MR-based measures of cartilage endplate health
原位定向对基于 MR 的软骨终板健康定量测量的影响
  • 批准号:
    10607735
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
JHU TRAC: Training and Supporting the Next Generation of TB Researchers
JHU TRAC:培训和支持下一代结核病研究人员
  • 批准号:
    10431020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Estimating the Seroincidence of Melioidosis, Typhoid Fever and Scrub Typhus from Cross-sectional Serosurveys
从横断面血清调查中估计类鼻疽、伤寒和恙虫病的血清发病率
  • 批准号:
    10706340
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
MATRIX: enhancing access to global research in the mathematical sciences
MATRIX:增强数学科学研究的全球性
  • 批准号:
    LE220100107
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
JHU TRAC: Training and Supporting the Next Generation of TB Researchers
JHU TRAC:培训和支持下一代结核病研究人员
  • 批准号:
    10593142
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了