Incipient Fault Detection in Rotating Machines Using a Neural Network
使用神经网络检测旋转机器的初期故障
基本信息
- 批准号:8922727
- 负责人:
- 金额:$ 11.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-07-01 至 1994-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main objective of the proposed work is to develop a new approach to detection of incipient faults in rotating machines by using artificial neural networks. Medium size induction motors are used as prototypes for rotating machines in this project due to their wide application and also for economic reasons. The concept can be easily generalized from induction motors to other rotating machines. The design of an artificial neural network to detect incipient faults of induction motors is based on the steady-state performance of the motor. However, the detection scheme will be applied in real time when the motor experience occasional disturbances, and in this case, the motor will not always be in steady-state. Inappropriate inputs to the fault detector will yield false alarms at the fault dector. An artificial neural network will be developed to filter out the transient measurements but retain the steady-state measurements and thus feed the correct measurement to the fault detector. The expected significance of the proposed work will be development of an on-line incipient fault detector for rotating machines. The detector is composed of two parts: (1) a measurement disturbance filter artificial neural network, and (2) an incipient fault detection artificial neural network. The detector will be able to detect the common incipient faults of the motor, such as turn-to-turn insulation failure and bearing wear, and will be robust to disturbances in the motor as well as to measurement noise. Theory will be developed to ensure the performance of the networks, including training (learning) and recalling schemes under different motor operating conditions. The performance of the disturbance and noise filtering neural network will be compared to the conventional noise filtering schemes
拟议工作的主要目的是通过使用人工神经网络开发一种新的方法来检测旋转机中的初期断层。 中等大小的感应电动机由于其广泛的应用以及出于经济原因而用作该项目中旋转机器的原型。 该概念可以很容易地从感应电动机到其他旋转机器。 人工神经网络检测感应电动机的初期故障的设计是基于电动机的稳态性能。 但是,当电动机体验偶尔出现干扰时,检测方案将实时应用,在这种情况下,电动机并不总是处于稳态中。 故障检测器的不适当输入将在故障驱动器上产生错误警报。 将开发人工神经网络,以滤除瞬态测量值,但保留了稳态测量,从而将正确的测量值馈送到断层检测器。 拟议工作的预期意义将是开发用于旋转机器的在线初始故障检测器。 检测器由两个部分组成:(1)测量干扰过滤器人工神经网络,以及(2)初始的故障检测人工神经网络。 检测器将能够检测电动机的常见发射断层,例如转弯的绝缘失败和轴承磨损,并且对电动机的干扰以及测量噪声非常有力。 将开发理论以确保网络的性能,包括培训(学习)和在不同的运动工作条件下召回方案。 将干扰和噪声过滤神经网络的性能与常规的噪声过滤方案进行比较
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mo-Yuen Chow其他文献
Distributed, Neurodynamic-Based Approach for Economic Dispatch in an Integrated Energy System
综合能源系统中基于神经动力学的分布式经济调度方法
- DOI:
10.1109/tii.2019.2905156 - 发表时间:
2020-04 - 期刊:
- 影响因子:12.3
- 作者:
Zhongkai Yi;Yinliang Xu;Jiefeng Hu;Mo-Yuen Chow;Hongbin Sun - 通讯作者:
Hongbin Sun
Distributed Event-Triggered H∞ Consensus Based Current Sharing Control of DC Microgrids Considering Uncertainties
考虑不确定性的分布式事件触发的基于共识的直流微电网均流控制
- DOI:
10.1109/tii.2019.2961151 - 发表时间:
2020 - 期刊:
- 影响因子:12.3
- 作者:
Jianguo Zhou;Yinliang Xu;Hongbin Sun;Liming Wang;Mo-Yuen Chow - 通讯作者:
Mo-Yuen Chow
Mo-Yuen Chow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mo-Yuen Chow', 18)}}的其他基金
PFI:AIR - TT: Prototyping a Smart Battery Gauge Technology for Stationary Energy Storage of Renewable Energy Resources
PFI:AIR - TT:用于可再生能源固定储能的智能电池电量计技术原型
- 批准号:
1500208 - 财政年份:2015
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Breakthrough: Collaborative: Secure Algorithms for Cyber-Physical Systems
突破:协作:网络物理系统的安全算法
- 批准号:
1505633 - 财政年份:2015
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
I-Corps: iSpace Technology for Novel Traffic Light Managements
I-Corps:用于新型交通灯管理的 iSpace 技术
- 批准号:
1338371 - 财政年份:2013
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: AIS gene library based real-time resource allocation on time-sensitive large-scale multi-rate systems
合作研究:GOALI:时间敏感的大规模多速率系统上基于AIS基因库的实时资源分配
- 批准号:
0823952 - 财政年份:2008
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Small World Stratification for Power System Fault Diagnosis with Causality
具有因果关系的电力系统故障诊断的小世界分层
- 批准号:
0653017 - 财政年份:2007
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
U.S.-India Planning Visit: Collaborative Research on Networked Control Systems (NCS) for Critical Multi-variable Systems, 06/01/06 - 05/31/07 Salt Lake, Kolkata (India)
美印计划访问:关键多变量系统网络控制系统 (NCS) 的合作研究,2006 年 6 月 1 日 - 2007 年 5 月 31 日盐湖城,加尔各答(印度)
- 批准号:
0632492 - 财政年份:2006
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Biologically Inspired Intelligent Fault Diagnosis for Power Distribution Systems
配电系统的仿生智能故障诊断
- 批准号:
0245383 - 财政年份:2003
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Engineering Research Equipment: Fast Prototyping System for Motor Incipient Fault Detection
工程研究设备:电机早期故障检测快速原型系统
- 批准号:
9610509 - 财政年份:1997
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
A Neural/Fuzzy Approach for Motor Incipient Fault Detection
电机初期故障检测的神经/模糊方法
- 批准号:
9521609 - 财政年份:1995
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Distribution Systems Fault Causes Identification
配电系统故障原因识别
- 批准号:
9311833 - 财政年份:1993
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
相似国自然基金
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
雌激素通过错配修复系统预防大肠癌的研究:一个新的假说
- 批准号:30940086
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:专项基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
制冷系统故障诊断关键问题的定量研究
- 批准号:50876059
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Analysis Solution to Improve Fault Detection on Mechanical Assembly Production Lines
改善机械装配生产线故障检测的分析解决方案
- 批准号:
10073325 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Collaborative R&D
Development of a Fault Detection Method Using Partial Shadows for Fire Prevention of Overloading Photovoltaic Power Generation Systems
超载光伏发电系统火灾预防中局部阴影故障检测方法的研制
- 批准号:
23K03806 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving STELLA Linac design by early fault detection and preventative maintenance for reducing Linac downtime using AI and ML
通过早期故障检测和预防性维护改进 STELLA Linac 设计,使用 AI 和 ML 减少 Linac 停机时间
- 批准号:
2878867 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Studentship
I-Corps: Non-Intrusive Cooling System Fault Detection Using Deep Learning of Acoustic Emissions
I-Corps:使用声发射深度学习进行非侵入式冷却系统故障检测
- 批准号:
2212002 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual