非线性数学期望下的倒向随机微分方程及其应用

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11801365
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    24.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0603.经济数学与金融数学
  • 结题年份:
    2021
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2021-12-31

项目摘要

The nonlinear mathematical expectation theory is a non-trivial generalization of the classical probability thoery. This brand new theory is a perfect mathematical framework for analysing financial problem in the context of volatility uncertainty and it provides efficient probabilistic tools to interpret fully nonlinear partial differential equations. In this project, we aim to investigate backward stochastic differential equations within this framework. Precisely, we synthetically apply stochastic analysis techniques and partial differential equations tools to discuss such equations with more general conditions. Moreover, we employ these equations to solve stochastic control problems and meaningful problems in finance, for example, the utility maximization problem under volatility uncertainty and the general principal-agent problem under moral hazard. Through this project, we plan to develop new stochastic analysis techniques and obtain novel results to enrich the nonlinear mathematical expectation theory and to broaden the scope of its application.
作为经典概率论的非平凡推广,非线性数学期望理论不仅为刻画波动率不确定性下的金融问题提供了完美数学框架,而且为全非线性偏微分方程的概率解释提供了有力的工具。本项目将在这一全新理论基础上围绕倒向随机微分方程展开研究,通过随机分析方法以及偏微分方程技术,讨论该方程在更为一般的条件下的可解性,探索运用该方程解决随机控制以及金融数学上的具体问题,尤其是在波动率不确定背景下的效用最大化问题和具有道德风险的委托代理问题。通过本项目的研究,可以发展一些新的随机分析方法和技术手段,得到一些国内外领先的原创性成果,深化非线性数学期望理论,为该理论的应用提供更广阔的前景。

结项摘要

该项目研究了非线性数学期望下的倒向随机微分方程,给出了随机时域上的利普希茨系数的方程的适定性以及与全非线性偏微分方程的解的关系。同时,该项目研究了含有道德风险的委托代理问题,将问题扩展到了委托人可以选择终止合同的一般情形,并通过二阶倒向随机微分方程的解为上述委托代理问题提供了可解性。最后,该项目研究了存在交易费用市场上的期望效用最大化问题,给出了对偶问题最优解的刻画及稳定性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On properties of solutions to Black-Scholes-Barenblatt equations
关于 Black-Scholes-Barenblatt 方程解的性质
  • DOI:
    10.1186/s13662-019-2135-z
  • 发表时间:
    2019
  • 期刊:
    Advances in Difference Equations
  • 影响因子:
    4.1
  • 作者:
    Li Xinpeng;Lin Yiqing;Xu Weicheng
  • 通讯作者:
    Xu Weicheng
Second order backward SDE with random terminal time
具有随机终止时间的二阶后向 SDE
  • DOI:
    10.1214/20-ejp498
  • 发表时间:
    2018-02
  • 期刊:
    Electronic Journal of Probability
  • 影响因子:
    1.4
  • 作者:
    Lin Yiqing;Ren Zhenjie;Touzi Nizar;Yang Junjian
  • 通讯作者:
    Yang Junjian
Utility Maximization Problem with Transaction Costs: Optimal Dual Processes and Stability
交易成本的效用最大化问题:最优双进程和稳定性
  • DOI:
    10.1007/s00245-020-09699-8
  • 发表时间:
    2021
  • 期刊:
    Applied Mathematics and Optimization
  • 影响因子:
    1.8
  • 作者:
    Gu Lingqi;Lin Yiqing;Yang Junjian
  • 通讯作者:
    Yang Junjian
RANDOM HORIZON PRINCIPAL-AGENT PROBLEMS
随机水平委托代理问题
  • DOI:
    10.1137/20m1321620
  • 发表时间:
    2022-01-01
  • 期刊:
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION
  • 影响因子:
    2.2
  • 作者:
    Lin, Yiqing;Ren, Zhenjie;Yang, Junjian
  • 通讯作者:
    Yang, Junjian

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码