G-Hurwitz数的chamber结构与穿墙公式

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11401571
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0107.代数几何与复几何
  • 结题年份:
    2017
  • 批准年份:
    2014
  • 项目状态:
    已结题
  • 起止时间:
    2015-01-01 至2017-12-31

项目摘要

Hurwitz numbers are classical objects in enumerative geometry, which relate the geometry of Riemann surfaces to the representation theory of symmetric groups. The generating series of Hurwitz numbers satisfies the cut-and-join equation. Hurwitz numbers are closely related to Gromov-Witten theory, and the cut-and-join equation is used to prove many theorems in Gromov-Witten theory. Under the influence of orbifold theory, people try to generalize Hurwitz numbers by adding a finite group. One such generalization is called G-Hurwitz numbers, whose generating function satisfies the colored cut-and-join equations. Using boson-fermion correspondence, we can write the generating function of G-Hurwitz numbers as the vacuum expectation value of certain operators, thus proving the it is a tau function of the 2-Toda hierarchy..In this project, we plan to study the further applications of the colored cut-and-join equations ang the chamber structure of G-Hurwitz numbers and the corresponding wall-crossing formulas.
Hurwitz数是计数几何中的经典对象,它和曲线模空间的几何以及对称群的表示论密切相关。Hurwitz数的生成函数满足cut-and-join方程。Hurwitz数与Gromov-Witten理论紧密相关,cut-and-join方程也被用来证明许多与Gromov-Witten理论相关的定理。受到orbifold理论的影响,人们考虑加入一个有限群 G 的作用来推广Hurwitz数。一个自然的推广就是G-Hurwitz 数,它的生成函数满足colored cut-and-join方程。利用玻色费米对应,我们可以把G-Hurwitz 数的生成函数写成一个算子的真空期望值,从而证明它是2-Toda可积方程簇的一个tau函数。本项目中,我们准备研究colored cut-and-join方程的进一步应用以及G-Hurwitz 数的chamber结构和wall-crossing公式。

结项摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

四川巴塘地热田水文地球化学特征及成因
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    水文地质工程地质
  • 影响因子:
    --
  • 作者:
    赵佳怡;张薇;张汉雄;屈泽伟;李曼;岳高凡
  • 通讯作者:
    岳高凡
地热规模化开发断层滑动概率评估——以雄安新区深部岩溶热储为例
  • DOI:
    --
  • 发表时间:
    2021
  • 期刊:
    中国地质
  • 影响因子:
    --
  • 作者:
    岳高凡;王贵玲;马峰;朱喜;张汉雄
  • 通讯作者:
    张汉雄

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

张汉雄的其他基金

G-Hurwitz数,colored cut-and-join方程和镜像对称
  • 批准号:
    11326074
  • 批准年份:
    2013
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码