基于气垫船减阻结构的低发热高刚度超精密液体静压轴承的基础研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    51905056
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    26.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    E0509.加工制造
  • 结题年份:
    2022
  • 批准年份:
    2019
  • 项目状态:
    已结题
  • 起止时间:
    2020-01-01 至2022-12-31

项目摘要

The application of liquid hydrostatic bearings on the motorized spindles of precision milling machine tools will greatly improve the machining accuracy of this type of machine tools. However, due to the serious shear heat generation of oil film at high speed, it is difficult to meet the speed requirement of such machines and the main solution at present is drag reduction. In view of the current situation that the super-hydrophobic micro-structures have limited drag reduction effect and are difficult to be prepared on the bearing surfaces, inspired by the working principle of hovercraft, this project proposes a hovercraft drag reduction structure (i.e. oil land air pad reduction structure) suitable for liquid hydrostatic bearings, which is expected to solve the problem of heat generation at high speed from the bottom layer. Through the combination of theory and experiment, three basic contents are systematically studied including drag reduction mechanism, stiffness law and precision law. Taking the active air pad drag reduction mechanism and the gas-liquid film thickness control method in the micro-gap as the key scientific problems, the heat generation is greatly reduced by establishing a gas-liquid two-phase film through the oil land air pad reduction structure, the drag reduction effect is quantitatively characterized by the two-phase fluid velocity variation model between two parallel plates, and the influence on heat, stiffness and precision is adjusted by the gas-liquid film thickness control method through adjusting the throttling resistance and inlet pressure. Furthermore, the hydrostatic bearings with three advantages of low heat generation, high stiffness and ultra precision are obtained, which can be widely used for precision milling machine tools, ultimately improving the processing and manufacturing capabilities of precision machine tool components and complete machine tools in China.
液体静压轴承在精密铣削类机床电主轴上应用,将大幅提高该类机床加工精度,但由于高速下油膜剪切发热严重,难以满足该类机床速度要求,目前主要解决途径是减阻。本项目针对超疏水微织构减阻效果有限且很难在轴承曲面上制备的现状,受气垫船工作原理启发提出了一种适用于液体静压轴承的气垫船减阻结构(即封油面气垫减阻结构),可以从底层解决高速油膜发热难题,理论和实验相结合系统研究基于这种新结构的液体静压轴承的减阻机理、刚度规律和精度规律等三项基础内容,以微间隙有源气垫减阻机理和气液膜厚控制方法为关键科学问题,通过封油面气垫减阻结构建立气液两相膜大幅减小发热,通过两平行板间两相流体速度变化模型定量表征减阻效果,通过调整节流阻力和进口压力控制气液膜厚调整对发热、刚度和精度的影响,进而获得具有低发热、高刚度和超精密等三个优点的液体静压轴承,可以在精密铣削类机床上广泛应用,最终提高我国精密机床部件和整机的加工制造能力。

结项摘要

本项目受气垫船工作原理启发提出了一种适用于液体静压轴承的气垫船减阻结构(即封油面气垫减阻结构),可以从底层解决高速油膜发热难题,理论和实验相结合系统研究了基于这种新结构的液体静压轴承的减阻机理、刚度规律和精度规律等三项基础内容。建立了两平板间两相流体速度变化模型,得到了气垫减阻率的理论近似解,发现气垫减阻可能是微织构减阻的极限状态,并通过实验观测了静压油垫气液两相膜的形成和温度变化。建立了气液两相膜等效刚度串并联模型,得到了刚度减少率的理论近似解,并通过实验测量了有气垫和没气垫时的刚度变化。建立了单频率谐波误差影响模型,得到了误差均化系数的理论近似解,并通过实验测量了有气垫和没气垫时的精度变化。以微间隙有源气垫减阻机理和气液膜厚控制方法为关键科学问题,初步得到了具有低发热、高刚度和超精密等三个优点的液体静压轴承,为其在精密铣削类机床主轴上广泛应用提供了理论基础。依托项目支持,发表SCI论文6篇,申请发明专利1项,培养在读研究生1名和本科毕业生2名,搭建了基于封油面气垫减阻结构的AH5030静压油垫实验台1套和AH60静压轴承实验台1套。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
A study on accuracy of linear ball guide
直线滚珠导轨精度研究
  • DOI:
    10.1177/09544062211023069
  • 发表时间:
    2022-02
  • 期刊:
    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
  • 影响因子:
    --
  • 作者:
    Zhang Penghai;Wang Tao;Zha Jun
  • 通讯作者:
    Zha Jun
Influence of rotation speed on motion accuracy of hydrostatic journal bearing
转速对静压轴颈轴承运动精度的影响
  • DOI:
    10.1007/s11071-021-06781-w
  • 发表时间:
    2021-08
  • 期刊:
    Nonlinear Dynamics
  • 影响因子:
    5.6
  • 作者:
    Zhang Penghai;Peng Yizhen
  • 通讯作者:
    Peng Yizhen
A study on accuracy of porous journal air bearing
多孔轴颈空气轴承精度研究
  • DOI:
    10.1016/j.precisioneng.2020.06.011
  • 发表时间:
    2020-11
  • 期刊:
    Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology
  • 影响因子:
    3.6
  • 作者:
    Zhang Penghai
  • 通讯作者:
    Zhang Penghai
Accuracy prediction model of an orifice-compensated aerostatic bearing
孔板补偿气体静压轴承精度预测模型
  • DOI:
    10.1016/j.precisioneng.2021.08.009
  • 发表时间:
    2021-08-17
  • 期刊:
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY
  • 影响因子:
    3.6
  • 作者:
    Zhang, Penghai
  • 通讯作者:
    Zhang, Penghai
Prediction of motion accuracy in five degrees of freedom for hydrostatic rotary table with any recess number
任意凹槽数静压转台五自由度运动精度预测
  • DOI:
    10.1177/0954406220964518
  • 发表时间:
    2020-10
  • 期刊:
    Proceedings of the Institution of Mechanical Engineers - Part C: Journal of Mechanical Engineering Science
  • 影响因子:
    --
  • 作者:
    Zhang Penghai;Chen Yaolong;Zha Jun;Lei Zhimei
  • 通讯作者:
    Lei Zhimei

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码