高维数据下多样本均值检验问题的研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11526070
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    2.5万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0402.统计推断与统计计算
  • 结题年份:
    2016
  • 批准年份:
    2015
  • 项目状态:
    已结题
  • 起止时间:
    2016-01-01 至2016-12-31

项目摘要

This project intends to research from the following two aspects:.(1)Tests on MANOVA in high dimensional data. On the basis of sum of squares of deviations of sample means, the two sample tests in literature are extended to two different expressions; Then, new tests are proposed, which has weaker conditions, higher powers and broader applications than existed tests..(2) Linear hypothesis on sample means in high dimensional data. At first, the Bennett's transformation is extended to the high dimensional case. Then using this new Bennett transformation and the existed methods on two-sample tests, new tests are proposed. . The analysis of complex or high dimensional data is an urgent work for statistics, the project is important both in theory and practice at the age of big data.
本项目拟从以下两个方面进行研究:.(1)高维数据下的MANOVA中的检验问题。基于多样本均值的离差平方和,将已有文献中的两样本检验统计量进行两种不同形式的推广,构造了条件更弱、功效较高、适用范围更广的新的检验统计量。.(2)高维数据下多样本均值的线性假设的检验问题。首先将Bennett变换推广到高维的情形,然后基于新的Bennett变换和已有文献中构造两样本检验统计量的方法构造新的检验统计量。. 在这个大数据时代,分析复杂数据和高维数据将是统计学的一个主要任务,所以,本项目具有重要的科学意义和应用价值。

结项摘要

本项目拟从以下两个方面进行研究:.(1)高维数据下的MANOVA中的检验问题。基于多样本均值的离差平方和,将已有文献中的两样本检验统计量进行两种不同形式的推广,构造了条件更弱、功效较高、适用范围更广的新的检验统计量。.(2)高维数据下多样本均值的线性假设的检验问题。首先将Bennett变换推广到高维的情形,然后基于新的Bennett变换和已有文献中构造两样本检验统计量的方法构造新的检验统计量。. 在这个大数据时代,分析复杂数据和高维数据将是统计学的一个主要任务,所以,本项目具有重要的科学意义和应用价值。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wiener过程下退化模型的客观Bayes分析
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    Journal of Systems Science and Complexity
  • 影响因子:
    2.1
  • 作者:
    Lei He;Daojiang He;Mingxiang Cao
  • 通讯作者:
    Mingxiang Cao
平衡损失函数下一般线性模型中共同均值参数线性估计的可容许性
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    Journal of Multivariate Analysis
  • 影响因子:
    1.6
  • 作者:
    Mingxiang Cao;Daojiang He
  • 通讯作者:
    Daojiang He
多元统计中平衡损失函数下均值向量的线性可容许估计
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    Communications in Statistics-Theory and Methods
  • 影响因子:
    0.8
  • 作者:
    Mingxiang Cao;Guangjun Shen
  • 通讯作者:
    Guangjun Shen

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

高维数据下MANOVA检验
  • DOI:
    10.15918/j.tbit1001-0645.2015.08.019
  • 发表时间:
    2015
  • 期刊:
    北京理工大学学报
  • 影响因子:
    --
  • 作者:
    曹明响;徐兴忠
  • 通讯作者:
    徐兴忠
Parameter estimation for Ornstein Uhlenbeck processes of the second kind driven by alpha-stable Levy motions
α稳定 Levy 运动驱动的第二类 Ornstein Uhlenbeck 过程的参数估计
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Communications in Statistics – Theory and methods
  • 影响因子:
    --
  • 作者:
    余迁;申广君;曹明响
  • 通讯作者:
    曹明响

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码