阻断GPI锚去酰基化抑制白念珠菌侵染宿主分子机制研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    81471924
  • 项目类别:
    面上项目
  • 资助金额:
    72.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    H2202.病原真菌与感染
  • 结题年份:
    2018
  • 批准年份:
    2014
  • 项目状态:
    已结题
  • 起止时间:
    2015-01-01 至2018-12-31

项目摘要

Invasive fungal infections are associated with significant morbidity and mortality. Candida albicans is the major opportunistic fungal pathogen of humans. The fungal cell wall, as the outermost cellular structure, is a complex of cross-linked polysaccharides and glycoproteins which are critical for maintenance of the integrity and shape of the cell, but also a key determinant of virulence because its surface bears glycoproteins that mediate pathogenic fungi adhesion and invasion of host tissues. The first and most abundant class of cell wall proteins (CWPs) covalently attached to cell wall structural fibrillar polysaccharide is glycosylphosphatidyl inositol (GPI) anchored proteins (GPI-CWP), linking to β-1, 6-glucan through a GPI remnant. GPI anchor is responsible for all of the GPI-anchored proteins transporting and attaching to the cell wall of the C. albicans. Given that deleting one of the GPI-anchored proteins, such as Ecm33p, can cause reduced virulence, it is reasonable to expect that deletions in the GPI biosynthetic pathway to block all of the GPI-anchored proteins attaching to the cell wall will be fatal for C.albicans and may provide a novel mechanism for antifungal therapy. However, few previous studies pubished on the proteins which involved in GPI biosynthesis. In our previous study, we performed series study on the GPI biosynthetic pathway. We functionally dissected the BST1 gene, which was responsible for GPI inositol deacylation in C. albicans. We showed that blocking GPI inositol deacylation in C. albicans by deletion of BST1 gene could markedly change the cell wall structure, including GPI-anchored protein abolishing and pathogen-associated molecular patterns (PAMP) exposure of cell wall. These cell wall structure changes induced C. albicans avirulence and enhanced the immune recognition by host innate immune cells. To our knowledge, this work is the first study with BST1 gene in C. albicans, and clearly shows a critical role for GPI inositol deacylation in virulence and immune recognition by host cell. In the present project, we mainly intend to investigate the cellular and molecular mechanisms on inhibition of C.albican infecting host by blocking GPI inositol deacylation, using BST1 gene deletion strains as a tool. One hand, we will screen the critical proteins on cell wall of C.albicans, which are responsible for avirulence induced by blocking GPI inositol deacylation, by iTRAQ-based quantitative proteomics technology. On the other hand, we will investigate the molecular mechanisms of the enhanced host defense against C.albicans bst1Δ/Δ, of which GPI inositol deacylation is blocked. Finally, we will explore the structure-activity relationship of Bst1p involving in virulence and host immune recognition using site-directed mutagenesis technique. The present project will provide theoretical and experimental basis for new effective strategy and antifungal agent development.
侵袭性真菌感染发病率逐年上升,病死率居高不下。白念珠菌是最主要的条件致病真菌。大部分白念珠菌细胞壁蛋白包括许多毒力因子都属于GPI-锚定蛋白,且均通过GPI锚转运并锚定于细胞壁。虽然GPI锚生物合成对于白念珠菌侵染宿主具有重要作用,但目前研究尚较少。本项目前期对白念珠菌GPI锚合成通路开展了系列研究,首次发现GPI锚前体转移到新生蛋白质上后肌醇去酰基化反应对其侵染宿主能力有重要影响,该步反应由Bst1p催化。本项目拟在前期工作基础上,以BST1基因缺失菌为工具菌,深入研究阻断GPI锚去酰基化抑制白念珠菌侵染宿主的细胞与分子机制,一方面利用iTRAQ等技术研究阻断GPI锚去酰基化后白念珠菌对宿主侵袭力降低的机制;另一方面研究阻断白念珠菌GPI锚去酰基化后宿主对其免疫识别增强的机制;并采用定点突变技术研究Bst1p参与侵染宿主的活性位点,为发现防控侵袭性白念珠菌感染的新靶标提供理论和实验依据。

结项摘要

侵袭性真菌感染发病率逐年上升,其中最常见的念珠菌感染位居院内血源性感染的第四位。白念珠菌细胞壁中多数毒力因子都属于GPI-锚定蛋白,它们均通过GPI锚转运并锚定于细胞壁。我们提出如下科学假设:阻断白念珠菌GPI锚合成的关键步骤能够抑制众多毒力因子在细胞壁上的定位,在很大程度上抑制其侵染宿主。本项目前期发现白念珠菌GPI锚前体转移到新生蛋白质上后的肌醇去酰基化反应是GPI-锚定蛋白合成的关键步骤,该步反应由Bst1蛋白催化。本项目在前期工作基础之上深入研究阻断GPI锚去酰基化抑制白念珠菌侵染宿主的细胞与分子机制。本项目研究表明,通过BST1基因缺失抑制肌醇去酰基化反应后,白念珠菌细胞壁中GPI-锚定蛋白含量显著下降;BST1基因缺失菌对宿主细胞(血管内皮细胞、口腔和肠粘膜上皮细胞、肺上皮细胞)粘附、侵袭(诱导胞吞和主动穿刺)和损伤能力显著下降;BST1基因缺失菌在小鼠血源性念珠菌血症和胃肠道来源感染念珠菌血症模型中丧失毒力。另外一方面,我们发现通过基因缺失突变白念珠菌BST1基因后,细胞壁结构发生明显变化,最外层甘露聚糖成分显著减少,中间层β-(1,3)-D-葡聚糖成分暴露在细胞壁表面,能够诱导天然免疫细胞更强的免疫识别反应(如巨噬细胞NF-κB和MAPKs信号通路的激活及细胞因子释放、中性粒细胞杀伤增强等)。同时,我们研究发现Bst1蛋白202位丝氨酸是其发挥生物学功能的关键位点。综合以上研究数据,我们认为Bst1蛋白催化的肌醇去酰基化反应是白念珠菌GPI-锚定蛋白合成的关键步骤;阻断肌醇去酰基化反应不仅可以抑制毒力因子在白念珠菌细胞壁的定位,而且可以增强宿主的免疫识别反应,从而抑制白念珠菌感染机体。基于该项目的基础研究,本课题组开展了抗真菌感染GPI-锚定蛋白抑制剂的研究,获得了氨基砒啶类候选药物GPI-89,目前正在进一步研究。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Abolishing Cell Wall Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans Enhances Recognition by Host Dectin-1
消除白色念珠菌细胞壁糖基磷脂酰肌醇锚定蛋白可增强宿主 Dectin-1 的识别
  • DOI:
    10.1128/iai.00097-15
  • 发表时间:
    2015
  • 期刊:
    Infection and Immunity
  • 影响因子:
    3.1
  • 作者:
    Shen Hui;Chen Si Min;Liu Wei;Zhu Fang;He Li Juan;Zhang Jun Dong;Zhang Shi Qun;Yan Lan;Xu Zheng;Xu Guo Tong;An Mao Mao;Jiang Yuan Ying
  • 通讯作者:
    Jiang Yuan Ying
Synergistic antifungal activity of berberine derivative B-7b and fluconazole.
小檗碱衍生物 B-7b 与氟康唑的协同抗真菌活性
  • DOI:
    10.1371/journal.pone.0126393
  • 发表时间:
    2015
  • 期刊:
    PloS one
  • 影响因子:
    3.7
  • 作者:
    Li LP;Liu W;Liu H;Zhu F;Zhang DZ;Shen H;Xu Z;Qi YP;Zhang SQ;Chen SM;He LJ;Cao XJ;Huang X;Zhang JD;Yan L;An MM;Jiang YY
  • 通讯作者:
    Jiang YY
The non-Geldanamycin Hsp90 inhibitors enhanced the antifungal activity of fluconazole
非格尔德霉素 Hsp90 抑制剂增强氟康唑的抗真菌活性
  • DOI:
    --
  • 发表时间:
    2015
  • 期刊:
    American Journal of Translational Research
  • 影响因子:
    2.2
  • 作者:
    Li Liping;An Maomao;Shen Hui;Huang Xin;Yao Xueya;Liu Jian;Zhu Fang;Zhang Shiqun;Chen Simin;He Lijuan;Zhang Jundong;Zou Zui;Jiang Yuanying
  • 通讯作者:
    Jiang Yuanying
Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins.
Bst1 是白色念珠菌通过促进糖基磷脂酰肌醇锚定蛋白的细胞壁锚定来感染宿主所必需的
  • DOI:
    10.1038/srep34854
  • 发表时间:
    2016-10-06
  • 期刊:
    Scientific reports
  • 影响因子:
    4.6
  • 作者:
    Liu W;Zou Z;Huang X;Shen H;He LJ;Chen SM;Li LP;Yan L;Zhang SQ;Zhang JD;Xu Z;Xu GT;An MM;Jiang YY
  • 通讯作者:
    Jiang YY
Dectin-1 plays an important role in host defense against systemic Candida glabrata infection
Dectin-1 在宿主防御系统性光滑念珠菌感染中发挥重要作用
  • DOI:
    10.1080/21505594.2017.1346756
  • 发表时间:
    2017-01-01
  • 期刊:
    VIRULENCE
  • 影响因子:
    5.2
  • 作者:
    Chen, Si Min;Shen, Hui;An, Mao Mao
  • 通讯作者:
    An, Mao Mao

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

复方肠泰制剂对溃疡性结肠炎小鼠肠黏膜屏障的保护作用
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    海军医学杂志
  • 影响因子:
    --
  • 作者:
    何丽娟;张军东;安毛毛;姜远英
  • 通讯作者:
    姜远英

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

安毛毛的其他基金

嵌合模式识别受体Dectin-1的T细胞衔接器抗侵袭性念珠菌感染研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
白念珠菌细胞壁α-1,6-甘露糖骨架在侵染宿主过程中的作用机制研究
  • 批准号:
    81671989
  • 批准年份:
    2016
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
13-(6-叔丁基吡啶-3-基)-甲基小檗碱(BD-10-4)抗真菌作用机制研究
  • 批准号:
    81202563
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码