关于有删失数据存在的常用生存模型中极大似然比的精确和渐进分布

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11801459
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    20.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0403.贝叶斯统计与统计应用
  • 结题年份:
    2021
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2021-12-31

项目摘要

The likelihood ratio test is commonly used in hypothesis test. Due to the complicated form of the likelihood ratio, it prevents us from finding its exact distribution. Under some regularities, usually the chi-square distribution can be used to approximate it. This approximation works well with a large sample size. However, for a small sample, inaccuracy may occur. For this reason, it is important and necessary to find the exact distribution of the likelihood ratio for a small sample..In this project, we will start from the exponential distribution, one of the most widely used lifetime distributions in reliability. We would like to derive the exact distribution of the likelihood ratio for testing the scale parameter of one exponential population based on different censored data. The null hypothesis here is \theta=\theta_0. For exponential distribution, if the data is a complete, Type-II censored or progressively Type-II censored sample, then the exact distribution is already known. However, for some other general censored samples, the current methodology cannot be used. Here, we will present a more general way to find the exact distribution which can not only work for these special cases, but also for a more general censored form. After obtaining the exact distribution, we will show how to utilize it to obtain the asymptotic distribution, which will be efficient in computation when sample size is large. Through the similar approach, its power function can be determined. The result will then be extended to a two-parameter exponential distribution. Note, the support of a random variable from a two-parameter exponential distribution depends on the unknown parameter, therefore the asymptotic distribution of the likelihood ratio may not be chi-square distribution anymore. .Next, we will discuss the likelihood ratio test for two exponential populations based on combined censored data. It is the nature of interest to test the equality of two populations, i.e., if these two populations follow the same exponential distribution. However, to the best of our knowledge, there is no work on the exact distribution of likelihood ratio in this field so far. Many researchers have taken a lot of effort on this problem, but can only find some asymptotic distributions to approximate it. They shared their experience and mentioned the problems need to be overcame. Based on their work, we will derive both exact and asymptotic distributions of the likelihood ratio and then use them to determine the power function. By using the power function, we will also work on the optimal design..Finally, we will extend the idea to several widely used survival models, for example, accelerating life test, competing risk model, etc. On the other hand, instead of using the exponential assumption, we will use some other popular distributions, for example, gamma distribution, Weibull distribution, Laplace distribution, etc..During this project, Monte Carlo simulation will be carried out to check the accuracy of the results derived.
在假设检验中,极大似然比检验是最常用的手段。在数据量足够大且满足一定条件时,可用卡方分布进行拟合。但在数据量稀少时,盲目使用卡方分布拟合,会造成一定的误差。在大量文献中,研究者们通过不同的渐进分布来逼近它,却无法攻破精确分布的难题。本项目致力于完善这一空缺,为使研究陈果更有意义,我们会考虑不同数据删失的情况。.我们从常用的一参及二参指数分布入手,检验它的参数是否等于给定的值。除了在数据齐全及一些个别特殊删失情况下,极大似然比的精确分布都是未知的,甚至有时连卡方分布的渐进都会失效。我们将会给出一个更通用的方法来确定极大似然比的精确及渐进分布,并推导出相应的功效函数分布。此后我们将会对两组联合删失的数据进行讨论,研究其是否来自同一分布,这是一极为常见的假设检验,同样该检验极大似然比的精确分布至今未被攻克,也是我们期待解决的问题。最后我们会把这些理论应用到一些常见的生存模型并拓展到其他分布中。

结项摘要

在假设检验中,极大似然比检验是最常用的手段。在数据量足够大且满足一定条件时,可用卡方分布进行拟合。但在数据量稀少时,盲目使用卡方分布拟合,会造成一定的误差。在大量文献中,研究者们通过不同的渐进分布来逼近它,却无法攻破精确分布的难题。本项目致力于完善这一空缺,为使研究陈果更有意义,我们会考虑不同数据删失的情况。.我们从常用的指数分布入手,检验它的参数是否等于给定的值。除了在数据齐全及一些个别特殊删失情况下,极大似然比的精确分布都是未知的,甚至有时连卡方分布的渐进都会失效。我们给出了一个更通用的方法来确定极大似然比的精确及渐进分布,并推导出相应的功效函数分布。此后我们对两组联合删失的数据展开了讨论,研究其是否来自同一指数分布,这是一极为常见的假设检验,这也是检验极大似然比的精确分布第一次被攻克。在此基础上,我们还将所得理论拓展到了一些常用模型,比如加速寿命试验。这些假设检验在生物统计,可靠性研究等常见问题中有广泛使用,因此我们的结论具有很强的应用性。同时我们还把部分结论推广到了其他分布,例如,拉普拉斯分布。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact predictive likelihood inference for Laplace distribution based on a time-constrained experiment
基于时间受限实验的拉普拉斯分布的精确预测似然推断
  • DOI:
    10.1080/03610918.2019.1642480
  • 发表时间:
    2019-07
  • 期刊:
    Communications in Statistics - Simulation and Computation
  • 影响因子:
    --
  • 作者:
    Xiaojun Zhu;Narayanaswamy Balakrishnan;Yiliang Zhou;Hon-Yiu So
  • 通讯作者:
    Hon-Yiu So
Exact likelihood inference for Laplace distribution based on generalized hybrid censored samples
基于广义混合删失样本的拉普拉斯分布的精确似然推断
  • DOI:
    10.1080/03610918.2021.2018458
  • 发表时间:
    2021-12
  • 期刊:
    COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATION
  • 影响因子:
    --
  • 作者:
    Xiaojun Zhu;N. Balakrishnan
  • 通讯作者:
    N. Balakrishnan
Reliability of one-shot device with generalized gamma lifetime under cyclic accelerated life-test
循环加速寿命试验下具有广义伽马寿命的一次性器件的可靠性
  • DOI:
    10.1177/1748006x211058938
  • 发表时间:
    2021-11
  • 期刊:
    Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
  • 影响因子:
    --
  • 作者:
    Xiaojun Zhu;Kai Liu
  • 通讯作者:
    Kai Liu
Reliability estimation for one-shot devices under cyclic accelerated life-testing
循环加速寿命试验下一次性器件的可靠性估计
  • DOI:
    10.1016/j.ress.2021.107595
  • 发表时间:
    2021-08
  • 期刊:
    Reliability Engineering & System Safety
  • 影响因子:
    8.1
  • 作者:
    Xiaojun Zhu;Kai Liu;Mu He;N. Balakrishnan
  • 通讯作者:
    N. Balakrishnan
Exact Likelihood-Ratio Tests for a Simple Step-Stress Cumulative Exposure Model with Censored Exponential Data
带有删失指数数据的简单阶跃应力累积暴露模型的精确似然比检验
  • DOI:
    10.1007/s11009-019-09719-3
  • 发表时间:
    2020-06
  • 期刊:
    Methodology and Computing in Applied Probability
  • 影响因子:
    0.9
  • 作者:
    Xiaojun Zhu;N.Balakrishnan;Yiliang Zhou
  • 通讯作者:
    Yiliang Zhou

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码