针对在公共数据平台分享隐写数据进行隐蔽通信的隐写分析方法研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    U1936114
  • 项目类别:
    联合基金项目
  • 资助金额:
    71.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0205.网络与系统安全
  • 结题年份:
    2022
  • 批准年份:
    2019
  • 项目状态:
    已结题
  • 起止时间:
    2020-01-01 至2022-12-31

项目摘要

Sharing stego media data on public data sharing platforms such as SNS can be used for secret communication. Comparing to transmitting stego data in conventional point-to-point channel, this method arouses less suspicion to communication behavior and also confuses detector by huge number of false alarm on innocent data presented on public data sharing platforms, thus it is of higher security and practicability. This kind of stego communication differs from conventional method by steganographic embedding scheme and communication behavior. Specifically, it has to design robust steganographic embedding method to overcome JPEG recompression on uploaded images by public data sharing platform, and meanwhile maintain its security and payload capacity. Besides, it can adopt conspiracy schema via sharing stego data among multiple users to diversify stego data transmission and disguise secret communication behavior. This project aims at building a protection framework for finding and preventing illegal stego communication on public data sharing platforms by detecting both this kind of stego data and stego communication user behavior. In detection of robust stego data, we first analyze the common characteristics of current robust stego embedding methods and then associate them with steganalysis feature design for such stego data. For this purpose, we investigate several issues including multiple-object selecet-channel aware feature construction, high order tensorized feature representation and tensor decomposition for feature design, and novel statistical detection model incorporating channel recompression knowledge. Based on stego data detection and in order to improve detection accuracy, we detect steganographic users and their conspiring communication group by simultaneously utilizing stego data detection results and modeling data sharing interactions among users via graph convolutional networks. Distinguishing stego communication users and their conspiring group are described as node classification problem for graph data, and we further consider and model the time variant properties of stego data transmission flow in the graph to enhance its detecting ability. In this project, targeted detection on robust steganographic embedding and detection on steganographic users and conspiring communication group are closely related and integrated, which means the former lies a foundation for the later, and the later provide higher level detection with higher accuracy. In this project, research works of the two parts stem from characterizing the real application problems, thus they have both theoretical and applicable prospects.
利用社交网络等公共数据平台分享隐写图像进行隐蔽通信具有较高的安全性和实用性。与传统的端对端信道传输隐写数据相比,其通信行为更为隐蔽,隐写数据可被大量正常数据的虚警所混淆。该类隐写方法需要设计鲁棒隐写方法以克服平台对上传图像重压缩带来的影响并同时保证其安全性和容量,此外可能多人合谋分享进行隐写数据分散传递和行为掩护。本项目针对此类隐写数据和用户行为研究检测方法,提供防范措施。其中,隐写数据检测主要围绕该类鲁棒隐写方法共性特点,研究隐写嵌入对于图像重压缩特性的影响,以此构建多目标选择信道特征,并结合高阶张量特征构造和分解方法以及新型的隐写检测模型,提升检测性能。基于隐写数据检测信息,利用图数据描述用户间数据交互,构建图数据的卷积神经网络和图节点分析方法研究隐写用户及其合谋团体检测,同时结合隐写数据流转的时变关系提升检测精度。本项目针对该问题联合隐写数据和行为的特点建模研究,具有理论和应用价值。

结项摘要

利用社交网络等公共数据平台分享隐写图像进行隐蔽通信具有较高的安全性和实用性。与 传统的端对端信道传输隐写数据相比,其通信行为更为隐蔽,隐写数据可被大量正常数据的虚警所混淆。该类隐写方法需要设计鲁棒隐写方法以克服平台对上传图像重压缩带来的影响并同 时保证其安全性和容量,此外可能多人合谋分享进行隐写数据分散传递和行为掩护。本项目针对此类隐写数据和用户行为研究检测方法,提供防范措施。其中,隐写数据检测主要围绕该类鲁棒隐写方法共性特点,研究隐写嵌入对于图像重压缩特性的影响,以此构建新型的隐写检测模型,提升检测性能。基于隐写数据检测信息,利用图数据描述用户间数据交互,构建图数据的卷积神经网络和图节点分析方法研究隐写用户及其合谋团体检测。此外,本项目还研究了针对少量数据样本训练条件下的隐写分析方法,以及信道知识在鲁棒隐写编码和纠错译码中的应用。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(1)
专利数量(0)
Reversible Data Hiding in Encrypted Images Based on Binary Symmetric Channel Model and Polar Code
基于二元对称信道模型和Polar码的加密图像可逆数据隐藏
  • DOI:
    10.1109/tdsc.2022.3228385
  • 发表时间:
    2023-11
  • 期刊:
    IEEE Transactions on Dependable and Secure Computing
  • 影响因子:
    7.3
  • 作者:
    Kaimeng Chen;Qingxiao Guan;Weiming Zhang;Nenghai Yu
  • 通讯作者:
    Nenghai Yu
一种基于局部曲率的空域图像隐写失真代价
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    西安电子科技大学学报
  • 影响因子:
    --
  • 作者:
    韩烨;关晴骁;刘年生;陈和风;张卫明;高岩
  • 通讯作者:
    高岩
Detecting Steganography in JPEG Images Recompressed with The Same Quantization Matrix
检测使用相同量化矩阵重新压缩的 JPEG 图像中的隐写术
  • DOI:
    10.1109/tcsvt.2022.3155758
  • 发表时间:
    2022
  • 期刊:
    IEEE Transactions on Circuits and Systems for Video Technology
  • 影响因子:
    8.4
  • 作者:
    Qingxiao Guan;Kaimeng Chen;Hefeng Chen;Weiming Zhang;Nenghai Yu
  • 通讯作者:
    Nenghai Yu
Improving UNIWARD distortion function via isotropic construction and hierarchical merging
通过各向同性构造和分层合并改进 UNIWARD 畸变函数
  • DOI:
    10.1016/j.jvcir.2021.103333
  • 发表时间:
    2021
  • 期刊:
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
  • 影响因子:
    2.6
  • 作者:
    Guan Qingxiao;Chen Hefeng;Zhang Weiming;Yu Nenghai
  • 通讯作者:
    Yu Nenghai
Double-Layered Dual-Syndrome Trellis Codes Utilizing Channel Knowledge for Robust Steganography
利用通道知识实现稳健隐写术的双层双综合症网格码
  • DOI:
    10.1109/tifs.2022.3226904
  • 发表时间:
    2023
  • 期刊:
    IEEE Transactions on Information Forensics and Security
  • 影响因子:
    6.8
  • 作者:
    Qingxiao Guan;Peng Liu;Weiming Zhang;Wei Lu;Xinpeng Zhang
  • 通讯作者:
    Xinpeng Zhang

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码