ROC曲面半参数统计分析

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11001119
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    10.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0403.贝叶斯统计与统计应用
  • 结题年份:
    2013
  • 批准年份:
    2010
  • 项目状态:
    已结题
  • 起止时间:
    2011-01-01 至2013-12-31

项目摘要

本研究将建立对有序多类诊断数据进行ROC曲面分析的半参数统计推断方法. 从常用的累积比数模型出发, 推导出适用于有序多类的半参数的密度函数成比例模型, 然后对相应的分布函数进行半参数的估计, 进而构造出ROC曲面的半参数估计; 建立半参数ROC曲面,曲面下体积VUS的半参数估计量的大样本结果, 进而建立区间估计以及假设检验的方法; 从理论分析和统计模拟的角度比较半参数和非参数以及参数方法的优劣; 对提出的半参数方法进行核平滑, 得到光滑的ROC曲面及VUS的估计量; 基于成对数据, 建立对两个相关的ROC曲面进行比较的假设检验程序. 本研究将填补目前有序多类数据ROC曲面分析的半参数方法的空白.

结项摘要

ROC曲面是诊断医学统计学里评估有多类诊断结果的诊断测试方法准确性的一个重要工具, 是现代统计学的一个研究热点. 已有的ROC曲面估计方法主要是参数或非参数的方法, 鲜有半参数方法的报道. 在本研究中, 我们建立了关于ROC曲面估计的一种半参数方法. 该方法从广义逻辑斯蒂模型出发, 导出一个等价的半参数概率密度模型, 然后运用经验似然的统计推断方法, 构建模型下各个总体分布函数的半参数统计量, 进而构造出ROC曲面的半参数统计量. 我们提出的方法可以借助于许多统计软件里的逻辑斯蒂回归程序进行, 所以其实施非常的方便. 大量的统计模拟试验显示, 我们提出的半参数方法比传统的非参数方法有效; 而与参数方法相比, 当参数模型假设正确时, 与参数方法相当, 而当参数模型的假设不正确时, 其明显由于参数方法. 我们还将提出的方法用于了一个关于糖尿病研究的真实数据的分析上, 取得了较好的结果. ROC曲面下体积VUS是衡量一个医学诊断测试方法准确性的最常用的指标. 在概率密度比半参数模型下, 我们建立了VUS的点估计量, 但由于其渐近分布没有简单的结果, 故对其进行假设检验和区间估计常需要自助法, 计算量较大. 为了改进对VUS的统计推断方法, 我们研究了如何用纯粹的经验似然方法对VUS进行区间估计和假设检验. 另外, 我们还进行了一些关于半参数ROC曲面分析的一些辅助性研究. 例如, 在运用ROC曲面方法分析之前, 可以对不同类数据进行相对简单的统计比较, 以辅助ROC曲面的正式分析. 譬如对不同类的测试结果直接比较其平均大小. 这就涉及到在概率密度比半参数模型下如何比较两总体均值的问题. 我们研究了如何在概率密度比半参数模型下如何对两总体均值进行统计比较. 另外, 运用概率密度比半参数统计分析的首要前提是能够实现对概率密度比模型的拟合优度检验, 只有通过拟合优度检验的数据才能继续进行相应的半参数统计分析. 我们考虑了如何在分层抽样下建立概率密度比半参数模型, 并构建统计量进行相应的拟合优度检验, 以对进一步的ROC分析打好基础.

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
一种半参数ROC曲面估计方法
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    应用数学学报
  • 影响因子:
    --
  • 作者:
    万树文
  • 通讯作者:
    万树文
An empirical likelihood confidence interval for the volume under ROC surface
ROC 表面下体积的经验似然置信区间
  • DOI:
    10.1016/j.spl.2012.04.007
  • 发表时间:
    2012-07-01
  • 期刊:
    STATISTICS & PROBABILITY LETTERS
  • 影响因子:
    0.8
  • 作者:
    Wan, Shuwen
  • 通讯作者:
    Wan, Shuwen
Backward stochastic differential equations on hedging american contingent claims
对冲美式或有债权的后向随机微分方程
  • DOI:
    --
  • 发表时间:
    2010
  • 期刊:
    Mathematical and Computational Applications
  • 影响因子:
    1.9
  • 作者:
    Ruili Song
  • 通讯作者:
    Ruili Song
A Goodness-of-Fit Test for Logistic Regression Models in Stratified Case-Control Studies via Empirical Likelihood
分层病例对照研究中逻辑回归模型的拟合优度检验
  • DOI:
    10.1080/03610926.2010.503019
  • 发表时间:
    2011-10
  • 期刊:
    Communications in Statistics - Theory and Methods
  • 影响因子:
    --
  • 作者:
    Wan, Shuwen;Deng, Xin;Zhang, Biao
  • 通讯作者:
    Zhang, Biao
关于两总体均值差的一种半参数假设检验方法
  • DOI:
    --
  • 发表时间:
    2012
  • 期刊:
    中国科学:数学
  • 影响因子:
    --
  • 作者:
    万树文;方芳
  • 通讯作者:
    方芳

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

合成气为核心的联供联产系统变工况特性研究
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    化工学报
  • 影响因子:
    --
  • 作者:
    贾小平;万树文;钱宇
  • 通讯作者:
    钱宇
考虑环境成本的矩阵模式经济学分析方法
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    化工进展
  • 影响因子:
    --
  • 作者:
    贾小平;万树文;王芳;钱宇
  • 通讯作者:
    钱宇
基于Aspen的过程系统层次结构化火用分析
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    计算机与应用化学
  • 影响因子:
    --
  • 作者:
    王芳;万树文;贾小平;钱宇
  • 通讯作者:
    钱宇
基于Aspen Plus的过程系统层次结构化火用分析研究
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    武汉大学学报(工学版)
  • 影响因子:
    --
  • 作者:
    王芳;万树文;贾小平
  • 通讯作者:
    贾小平

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码