数域上的椭圆曲线与整数分解
项目介绍
AI项目解读
基本信息
- 批准号:11526119
- 项目类别:数学天元基金项目
- 资助金额:3.0万
- 负责人:
- 依托单位:
- 学科分类:A0102.解析数论与组合数论
- 结题年份:2016
- 批准年份:2015
- 项目状态:已结题
- 起止时间:2016-01-01 至2016-12-31
- 项目参与者:许勇军; 徐爱民;
- 关键词:
项目摘要
This project is about elliptic curve over number field and integer factoring. Up to now, we have proved, for a given rational integer D with two distinct odd prime factors, we could construct a family of elliptic curves which have conjectural rank one under the parity conjecture, and we can factor integer D using the x-coordinate of Q, which is the generator of the free part of Mordell-Weil group. In the following, we will continue to study the complexity of this factoring method and the case which is not rank one. Otherwise, we will also discuss the similar factoring problem over quadratic number fields.
本项目旨在研究数域上的椭圆曲线与代数整数分解的问题。目前我们已经证明,对于给定的含两个不同奇素因子的有理整数D,我们可以构造出一族在奇偶性猜想下秩为1的椭圆曲线,并且可以利用这些曲线的莫代尔-威伊自由部分的生成元Q的x-坐标实现整数D的分解,作为后续工作,我们将继续研究这一分解方法的复杂度问题及秩不为1的情形。再者,我们也将初步探讨二次数域上的整数分解问题。
结项摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
关于椭圆曲线y~2=x(x+σp)(x+σq)在类数为1虚二次域上的Selmer群及Mordell-Weil群结构(英文)
- DOI:--
- 发表时间:2013
- 期刊:数学进展
- 影响因子:--
- 作者:李修美
- 通讯作者:李修美
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
李修美的其他基金
基于P-ordering的Bhargava阶乘在函数中的若干应用
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}