AdS/CFT对偶中的非局域算符
项目介绍
AI项目解读
基本信息
- 批准号:11247231
- 项目类别:专项基金项目
- 资助金额:5.0万
- 负责人:
- 依托单位:
- 学科分类:A25.基础物理
- 结题年份:2013
- 批准年份:2012
- 项目状态:已结题
- 起止时间:2013-01-01 至2013-12-31
- 项目参与者:汪自庆; 覃莉; 陈莹莹; 魏阔;
- 关键词:
项目摘要
The AdS/CFT duality beautifully exemplified the idea of holography in clarity and precision, more powerfully than any other examples of the gravity/field theory correspondence, it also provides a powerful method to study strongly coupled gauge theory. We can gain deeper understanding of AdS/CFT duality by studying nonlocal operators in the context of AdS/CFT Correspondence. This project is first to compute the correlation function of fundamental and anti-symmetric Wilson surfaces. There are two possible leading contributions to the correlation. One is a M2-brane bounded by Wilson surface with massless propagating modes connecting the M2-brane and the M5-brane. The other is an M2-brane whose boundaries are attached to the M5-brane and Wilson surface. We will find that the Gross-Ooguri phase transition also exist in Wilson surface case. Then, we will study correlation functions of Wilson loops and local operators.
AdS/CFT 对偶给出全息原理一种非常漂亮的具体表述,它比其它引力/规范场对偶的表述更加清晰和准确,同时它为强相互作用的研究提供了一种重要的方法。我们可以通过研究非局域算子加深对AdS/CFT对偶的理解。在本项目中,我们首先计算基础表示和反对称表示的Wilson surfaces算子的关联函数。这时关联函数有两种可能的首阶项的贡献,第一种是M2膜以Wilson surface 算子为边界,M2膜与M5膜之间交换无质量的粒子,另一种主要贡献是M2膜以M5膜和Wilson surface算子为边界。我们希望找到在Wilson surface的情况下也有Gross-Ooguri相变。Wilson surfaces算子完成后,我们还将讨论Wilson loops算子与局域算子的关联函数。
结项摘要
AdS/CFT 对偶在弦理论的研究中非常重要。本项目主要是研究非局域算符从而理解AdS/CFT 对偶。我们在项目中计算了AdS7/CFT6对偶中的基础表示与反对称表示的威尔逊面算子的关联函数。这时的关联函数有两种可能的首阶项的贡献。我们计算了在AdS空间的环面经典解和边界项。关联函数两种首阶项的贡献有相同的发散项,通过这个计算事实,我们证明了在威尔逊面算子的情况下Gross-Ooguri相变仍然存在。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
刘昌勇的其他基金
AdS/CFT对偶的研究
- 批准号:11305131
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}