基于碲化镉复合纳米线自组装研究构筑无机有机复合膜电解质

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    21703029
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    25.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    B0204.胶体与界面化学
  • 结题年份:
    2020
  • 批准年份:
    2017
  • 项目状态:
    已结题
  • 起止时间:
    2018-01-01 至2020-12-31

项目摘要

At the present moment, the proton exchange membranes (PEMs) freezing due to the water molecules as proton conduction carriers passing from a liquid to a solid state below freezing point was an important reason to cause the failure on cold start for proton exchange membrane fuel cells (PEMFCs). The development on the anhydrous proton exchange membranes with the low temperature proton conduction was one of the key strategies to solve the problem of cold start for PEMFCs. Ionic liquids as the anhydrous proton conduction carriers have been widely applied to prepare PEMs. Although ionic liquids have attracted researchers' attention, some problems are believed to obstruct their advance in PEMs. For example, the random dispersion of ionic liquids would go against the improvement on proton conduction; ionic liquids swelling polymer skeleton would reduce the tensile stress of membranes. . In this project, the cadmium telluride composite nanowires were prepared to replace ionic liquids as the anhydrous proton conduction carriers in PEMs. First of all, solid cadmium telluride composite nanowires were here synthesized from the interfacial self-assembly of cadmium telluride nanocrystallines with hydrophobic ionic liquids; then the inorganic-organic composite membrane electrolytes were fabricated by the layer-by-layer self-assembly of cadmium telluride composite nanowires with some functioned polymers. The inorganic-organic composite membrane electrolytes were expected to possess a satisfactory proton conductivity value and mechanical strength owing to the ordered distribution of the solid cadmium telluride composite nanowires and the negligible swelling of polymer skeleton. In the interface between cadmium telluride nanocrystalline and hydrophobic ionic liquids, the interaction force between cadmium telluride nanocrystallines and ionic liquids, the “oil-water” interfacial tension and the dipole-dipole interaction among cadmium telluride nanocrystallines constituted the driving force to perform the self-assembly of solid cadmium telluride composite nanowires. For the low temperature proton conduction, the cadmium telluride composite nanowires could be superior to ionic liquid through the systematic investigations on the structure of the cadmium telluride nanocrystalline ligands screening, ionic liquids determination and the reaction condition optimization. Eventually, the chemical and thermal stability, proton conductivity and mechanical property of the cadmium telluride composite nanowires and the fuel cell performance would be test during this project. It was expected that some suitable inorganic-organic composite membrane electrolytes could be screened out as PEMs candidates working under subzero temperature. We hope this project would provide a new idea or choice to solve the problem of PEMs freezing on cold start for PEMFCs under subzero temperature.
质子交换膜在低温下由于作为质子传导载体的水结冰而冻结是导致燃料电池冷启动失败的重要原因。发展可进行低温质子传导的新型非水质子交换膜成为解决燃料电池冷启动失败的策略。在本项目中,以碲化镉纳米晶与离子液体之间的作用力、液液界面张力以及纳米晶之间作用力为驱动力完成碲化镉复合纳米线的界面自组装,碲化镉复合纳米线作为质子传导载体再与聚合物进行层层自组装构筑成无机有机复合膜电解质。虽然碲化镉纳米晶不具备传导质子的能力,但是质子在无机有机复合膜中可借助于碲化镉复合纳米线提供的有序通道进行定向传导,并且固态的碲化镉复合纳米线可避免对聚合物溶胀而且其在复合膜有序分布更有助于质子传导。通过本项目的研究期待在低温条件下(-30℃),构筑的无机有机复合膜电解质的质子电导率达到0.01S/cm,满足燃料电池对质子交换膜的要求,从膜材料角度为解决低温下燃料电池冷启动失败的问题提供新的研究思路以及方法。

结项摘要

近年来,环境污染问题日益突出,因此发展燃料电池汽车作为家用汽车对于解决环境污染问题具有重要的现实意义。目前,实现燃料电池在低温下快速启动是影响燃料电池汽车走进人们生活的技术难题之一。针对质子交换膜中的水结成冰而导致燃料电池无法工作的现实问题,寻找在低温条件下具有良好质子传导能力的质子传导载体代替水分子制备非水质子交换膜电解质具有理论研究以及现实应用的双重价值。本项目提出以碲化镉纳米晶与离子液体自组装为碲化镉复合纳米线,再利用层层自组装法与聚合物构筑无机有机复合膜作为燃料电池的质子交换膜应用于低温非水环境中。.在具体的项目实施过程中,通过界面自组装法制备复合质子传导载体,利用层层自组装技术、旋涂技术、冷冻干燥技术以及真空辅助絮凝技术等构筑具有有序结构的无机有机复合膜并开展复合膜性能的测试研究,明确复合膜有序微观结构与其关键技术性能之间的构效关系,制备的复合膜具有良好的高温以及低温非水条件下的质子电导率,从质子交换膜的方面拓展了质子交换膜燃料电池的应用领域。其中,制备的SPEEK/PVA/PA复合膜在低温下具有良好的质子传导能力以及低温电导率稳定性。在-30oC下,复合膜质子电导率达到3.82×10-2 S/cm,在-30oC且连续测试980 h后,复合膜的质子电导率为3.33×10-2 S/cm。此外,在-30oC至30oC的范围内循环测试7次后,在-30oC下的电导率为5.30×10-2 S/cm,而在30oC下,复合膜的质子电导率达到1.31×10-1 S/cm。制备的复合膜在低温下尤其在冰点下具有良好的质子传导能力,为从膜材料角度解决质子交换膜燃料电池的低温长期存放以及冷启动失败等问题提供了新的研究思路以及策略。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(1)
专利数量(10)
Constructing anhydrous proton exchange membranes through alternate depositing graphene oxide and chitosan on sulfonated poly (vinylidenefluoride) or sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) membranes
在磺化聚偏氟乙烯或磺化聚偏氟乙烯-六氟丙烯共聚膜上交替沉积氧化石墨烯和壳聚糖构建无水质子交换膜
  • DOI:
    10.1016/j.eurpolymj.2020.110160
  • 发表时间:
    2021-01-05
  • 期刊:
    EUROPEAN POLYMER JOURNAL
  • 影响因子:
    6
  • 作者:
    Shen, Si;Jia, Tingting;Che, Quantong
  • 通讯作者:
    Che, Quantong
Enhancing proton conductivity of phosphoric acid-doped Kevlar nanofibers membranes by incorporating polyacrylamide and1-butyl-3-methylimidazoliumchloride
通过掺入聚丙烯酰胺和1-丁基-3-甲基氯化咪唑提高磷酸掺杂凯夫拉纳米纤维膜的质子电导率
  • DOI:
    10.1002/er.5818
  • 发表时间:
    2020-08-17
  • 期刊:
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH
  • 影响因子:
    4.6
  • 作者:
    Duan, Xiangqing;Jia, Jing;Che, Quantong
  • 通讯作者:
    Che, Quantong
Fabrication of layered membrane electrolytes with spin coating technique as anhydrous proton exchange membranes
采用旋涂技术制备层状膜电解质作为无水质子交换膜
  • DOI:
    10.1016/j.jcis.2019.08.034
  • 发表时间:
    2019-11-01
  • 期刊:
    JOURNAL OF COLLOID AND INTERFACE SCIENCE
  • 影响因子:
    9.9
  • 作者:
    Che, Quantong;Li, Ziyun;Liu, Lei
  • 通讯作者:
    Liu, Lei
Multilayered Membrane Electrolytes Based on Aramid Nanofibers for High-Temperature Proton Exchange Membrane Fuel Cells
用于高温质子交换膜燃料电池的基于芳纶纳米纤维的多层膜电解质
  • DOI:
    10.1021/acsanm.9b00144
  • 发表时间:
    2019-04-01
  • 期刊:
    ACS APPLIED NANO MATERIALS
  • 影响因子:
    5.9
  • 作者:
    Liu, Lei;Li, Ziyun;Che, Quantong
  • 通讯作者:
    Che, Quantong
Ultrathin membranes formation via the layer by layer self-assembly of carbon nanotubes-based inorganics as high temperature proton exchange membranes
通过碳纳米管基无机物的层层自组装形成超薄膜作为高温质子交换膜
  • DOI:
    10.1016/j.ijhydene.2020.03.175
  • 发表时间:
    2020-05-21
  • 期刊:
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • 影响因子:
    7.2
  • 作者:
    Jia, Tingting;Shen, Si;Che, Quantong
  • 通讯作者:
    Che, Quantong

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码